Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2006(4): 645-653
DOI: 10.1055/s-2006-926313
DOI: 10.1055/s-2006-926313
PAPER
© Georg Thieme Verlag Stuttgart · New York
Synthesis of Glycol Nucleic Acids
Further Information
Received
20 August 2005
Publication Date:
25 January 2006 (online)
Publication History
Publication Date:
25 January 2006 (online)
Abstract
Starting from glycidol, the synthesis of dimethoxytritylated glycol nucleoside phosphoramidites of adenine (A), thymine (T), uracil (U), guanine (G), and cytosine (C) is reported. These phosphoramidites are the building blocks for the automated solid phase synthesis of glycol nucleic acids (GNA) oligonucleotides and it is demonstrated that derived GNA duplexes with completely acyclic backbones considerably exceed the thermal stabilities of analogous DNA duplexes.
Key words
GNA - glycol nucleic acid - glycol nucleotides - acyclic nucleic acid backbone - epoxide ring opening
- 1
Watson JD.Crick FHC. Nature (London) 1953, 171: 737 - 2
Freier SM.Altmann K.-H. Nucleic Acids Res. 1997, 25: 4429 - 3
Eschenmoser A. Science 1999, 284: 2118 - 4
Nielsen PE. Acc. Chem. Res. 1999, 32: 624 - 5
Kool ET. Acc. Chem. Res. 2002, 35: 936 - 6
Leumann CJ. Bioorg. Med. Chem. 2002, 10: 841 - 7
Henry AA.Romesberg FE. Curr. Opin. Chem. Biol. 2003, 7: 727 - 8
Wagenknecht H.-A. Angew. Chem. Int. Ed. 2003, 42: 3204 - 9
Benner SA. Acc. Chem. Res. 2004, 37: 784 - 10
Zhang L.Peritz A.Meggers E. J. Am. Chem. Soc. 2005, 127: 4174 - 11 The potential stability of duplexes consisting of an acyclic glycol backbone has been discussed before. See:
Wippo H.Reck F.Kudick R.Ramaseshan M.Ceulemans G.Bolli M.Krishnamurthy R.Eschenmoser A. Bioorg. Med. Chem. 2001, 9: 2411 - 12 Glycol nucleotides have been incorporated into DNA strands and were shown to strongly destabilize duplex structures. See:
Nielsen P.Dreiøe LH.Wengel J. Bioorg. Med. Chem. 1995, 3: 19 - 13
Holý A.Ivanova GS. Nucleic Acids Res. 1974, 1: 19 - 14
Holý A. Collect. Czech. Chem. Commun. 1975, 40: 187 - 15
Holý A. Collect. Czech. Chem. Commun. 1978, 43: 3103 - 16
Holý A.Rosenberg I.Dvořáková H. Collect. Czech. Chem. Commun. 1989, 54: 2470 - 17
Larsen E.Danel K.Pedersen EB. Nucleosides Nucleotides 1995, 14: 1905 - 18
Larsen E.Danel K.Abdel-Aleem A.-AH.Nielsen P.Wengel J.Pedersen EB. Nucleosides Nucleotides 1995, 14: 1097 - 19
Ueda N.Kawabata T.Takemoto K. J. Heterocycl. Chem. 1971, 8: 827 - 20
Seita T.Kinoshita M.Imoto M. Bull. Chem. Soc. Jpn. 1973, 46: 1572 - 21
Acevedo OL.Andrews RS. Tetrahedron Lett. 1996, 37: 3931 - 22
Seita T.Yamauchi K.Kinoshita M.Imoto M. Bull. Chem. Soc. Jpn. 1972, 45: 926 - 23 For assigning the absolute stereochemistry on glycidols, see:
Hanson RM. Chem. Rev. 1991, 91: 437 - 24
Atkinson T.Smith M. In Oligonucleotide Synthesis: A Practical ApproachGait MJ. IRL Press; Oxford: 1984. p.35-81 - 25
Song Q.Sanghvi YS. Nucleosides, Nucleotides Nucleic Acids 2001, 20: 1267 -
26a
Schneider KC.Benner SA. J. Am. Chem. Soc. 1990, 112: 453 -
26b
Azymah M.Chavis C.Lucas M.Morvan F.Imbach J.-L. Nucleosides Nucleotides 1992, 11: 1241 -
26c
Vandendriessche F.Augustyns K.Van Aerschot A.Busson R.Hoogmartens J.Herdewijn P. Tetrahedron 1993, 49: 7223 -
26d
Nielsen P.Kirpekar F.Wengel J. Nucleic Acids Res. 1994, 22: 703 -
26e
Peng L.Roth H.-J. Helv. Chim. Acta 1997, 80: 1494 - For the concept of conformational restriction of nucleosides as a measure for preorganizing oligonucleotide single strands for duplex formation, see:
-
27a
Tarköy M.Leumann C. Angew. Chem., Int. Ed. Engl. 1993, 32: 1432 -
27b
Steffens R.Leumann CJ. J. Am. Chem. Soc. 1999, 121: 3249 -
27c
Wengel J. Acc. Chem. Res. 1999, 32: 301 - 28
Cantor WD.Warshaw MM. Biopolymers 1970, 9: 1059