Abstract
Cyclic oxonitriles exhibit unusual regio- and chemoselectivities, reflecting the juxtaposition of electron-withdrawing ketone and nitrile functionalities. In this review, synthetic access to β- and γ-oxonitriles is surveyed, as are the reactions of these two classes of oxonitriles. Collectively, the synopsis aims to highlight the synergistic properties of the nitrile and ketone groups by emphasizing synthetic applications which are otherwise difficult or impossible to perform.
1 Introduction
2 Physical Properties
2.1 β-Oxonitrile Syntheses
2.2 γ-Oxonitrile Syntheses
2.3 β-Oxoalkenenitrile Syntheses
2.4 γ-Oxoalkenenitrile Syntheses
3 Reactions of Oxonitriles
3.1 Alkylations of β-Oxonitriles
3.2 Alkylations of γ-Oxonitriles
3.3 Michael Additions of β-Oxonitriles
3.4 Michael Additions of γ-Oxonitriles
3.5 Reduction and Nucleophilic Additions to β-Oxonitriles
3.6 Reduction and Nucleophilic Additions to γ-Oxoalkenenitriles
3.7 Conjugate Additions to β-Oxoalkenenitriles
3.8 Ring Contraction, Cleavage, and Expansion of β-Oxonitriles
3.9 Ring Cleavage of γ-Oxonitriles
3.10 Cycloadditions with β-Oxoalkenenitriles
3.11 Cycloadditions with γ-Oxoalkenenitriles
3.12 Miscellaneous Reactions
4 Future Directions
Key words
oxonitriles - nitriles - alkylations - cyclizations - synthesis
References
1
Elnagdi MH.
Elmoghayar MRH.
Elgemeie GEH.
Synthesis
1984,
1
2a
Varner MA.
Grossman RB.
Tetrahedron
1999,
55:
13867
2b
Gawley RE.
Synthesis
1976,
777
2c
Jung ME.
Tetrahedron
1976,
32:
3
3a
Richard JP.
Williams G.
Gao J.
J. Am. Chem. Soc.
1999,
121:
715
3b
Bradamante S.
Pagani GA.
Advances in Carbanion Chemistry
Vol. 2:
Snieckus V.
JAI Press;
Washington DC:
1996.
p.189
3c
Bradamante S.
Pagani GA.
J. Chem. Soc., Perkin Trans. 2
1986,
1035
3d
Dayal SK.
Ehrenson S.
Taft RW.
J. Am. Chem. Soc.
1972,
94:
9113
4
Seebach D.
Angew. Chem. Int. Ed.
1979,
18:
239
5
Roberts JD.
Moreland WT.
J. Am. Chem. Soc.
1953,
75:
2167
6a
Agami C.
Kazakos A.
Levisalles J.
Sevin A.
Tetrahedron
1980,
36:
2977
6b
Agami C.
Fadlalah M.
Kazakos A.
Levisalles J.
Tetrahedron
1979,
35:
969
6c
Calvet A.
Levisalles J.
Tetrahedron Lett.
1972,
2157
7a
Sobolev A.
Vos M.
Zuilhof HT.
Sarabèr FCE.
Jansen BJM.
de Groot A.
Arkivoc
2005,
(xiv):
29
7b
Inubushi Y.
Kikuchi T.
Ibuka T.
Tanaka K.
Saji I.
Tokane K.
Chem. Pharm. Bull.
1974,
22:
349
8
Dehli JR.
Gotor V.
J. Org. Chem.
2002,
67:
6816
9
Deswarte S.
Bellec C.
Souchay P.
Bull. Soc. Chim. Belg.
1975,
84:
321
10
Rousseau G.
Quendo A.
Tetrahedron
1992,
48:
6361
11
Kulp SS.
Lipko JD.
J. Chem. Eng. Data
1981,
26:
420
12
Rasmusson GH.
Reynolds GF.
Steinberg NG.
Walton E.
Patel GF.
Liang T.
Cascieri MA.
Cheung AH.
Brooks JR.
Berman C.
J. Med. Chem.
1986,
29:
2298
13
Andresen S.
Margaretha P.
J. Chem. Res., Synop.
1994,
332
14a
Rodríguez MR.
Carretero JC.
J. Org. Chem.
2003,
68:
2975
14b
Gordon JLM.
Hartshorn MP.
Robinson WT.
Sies CW.
Wells BA.
Wikaira JL.
Wright GJ.
Aust. J. Chem.
1990,
43:
579
14c
Bourhis M.
Goursolle M.
Leger J.-M.
Tetrahedron Lett.
1989,
30:
4665
14d
Heinisch G.
Holzer W.
Nawwar GAM.
Monatsh. Chem.
1986,
117:
247
14e
Cavazza M.
Guella G.
Pietra F.
Helv. Chim. Acta
1988,
71:
1608
14f
Gillard M.
T’Kint C.
Sonveaux E.
Ghosez L.
J. Am. Chem. Soc.
1979,
101:
5837
14g
Schmidt RR.
Talbiersky J.
Angew. Chem.
1978,
17:
204
14h
Boontanonda P.
Grigg R.
J. Chem. Soc., Chem. Commun.
1977,
583
14i
Texier F.
Yebdri O.
Tetrahedron Lett.
1975,
855
14j
Mock WL.
Hartman ME.
J. Org. Chem.
1977,
42:
459
15a
Taylor EC.
McKillop A.
The Chemistry of Cyclic Enaminonitriles and o-Amino Nitriles
Interscience;
New York:
1970.
Ch. 1.
15b
Schaefer JP.
Bloomfield JJ.
Org. React. (N.Y.)
1967,
15:
1
16a
Bailey PD.
Collier ID.
Hollinshead SP.
Moore MH.
Morgan KM.
Smith DI.
Vernon JM.
J. Chem. Soc., Perkin Trans. 1
1997,
1209
16b
Stojanac N.
Valenta Z.
Can. J. Chem.
1991,
69:
853
16c
Kemp DS.
Carter JS.
J. Org. Chem.
1989,
54:
109
16d
Quast H.
Klaubert CA.
Jackman LM.
Freyer AJ.
Chem. Ber.
1988,
121:
1801
16e
Kemp DS.
Carter JS.
Tetrahedron Lett.
1987,
28:
4641
16f
Kemp DS.
Carter JS.
Tetrahedron Lett.
1987,
28:
4645
16g
Toth I.
Bozsar G.
Szabo L.
Baitz-Gacs E.
Tamas J.
Szantay C.
Liebigs Ann. Chem.
1987,
243
16h
Nallet J.-P.
Arnaud C.
Huet J.
Bull. Soc. Chim. Fr.
1979,
II-153
16i
Merchant JR.
Dike SY.
Proc. Indian Acad. Sci.
1978,
87:
229
16j
Chapman JC.
Pinhey JT.
Aust. J. Chem.
1974,
27:
2421
16k
Kulp SS.
Iobst SA.
J. Org. Chem.
1964,
29:
831
16l For the cyclization with catalytic antibodies, see: Currie M.
Suckling CJ.
Zhu L.-i.
Irvine J.
Stimson WH.
Tetrahedron
1995,
51:
8915
17
Larcheveque M.
Mulot P.
Can. J. Chem.
1979,
57:
17
18a
Kulp SS.
Can. J. Chem.
1967,
45:
1981
18b
Kulp SS.
Fish VB.
Easton NR.
Can. J. Chem.
1965,
43:
2512
18c
Kulp SS.
Fish VB.
Easton NR.
J. Med. Chem.
1963,
6:
516
19
Kulp SS.
Molnar J.
Miller PJ.
Herman ST.
J. Org. Chem.
1971,
36:
2203
20a
Kang J.
Meissner RS.
Wyler R.
De Mendoza J.
Rebek J.
Bull. Korean Chem. Soc.
2000,
21:
221
20b
Takaya H.
Naota T.
Murahashi S.-I.
J. Am. Chem. Soc.
1998,
120:
4244
20c
Molander GA.
Wolfe JP.
J. Braz. Chem. Soc.
1996,
7:
335
20d
Mukherjee A.
Seth M.
Bhaduri AP.
Singh S.
Chatterjee RK.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
1990,
29:
191
20e
Azzem MA.
Elgemeie GEH.
Neguid MA.
Fahmy HM.
Elmassry ZM.
J. Chem. Soc., Perkin Trans. 1
1990,
545
20f
Kantlehner W.
Mergen W.
Haug E.
Speh P.
Kapassakalidis JJ.
Braeuner H.-J.
Liebigs Ann. Chem.
1985,
1804
20g
Luche JL.
Petrier C.
Dupuy C.
Tetrahedron Lett.
1984,
25:
753
20h
Shukla JS.
Misra R.
Saxena S.
Acta Cienc. Indica
1981,
7:
77 ; Chem. Abstr. 1982 , 97 , 386626
20i
Helmers R.
Justus Liebigs Ann. Chem.
1973,
181
20j
Baldwin S.
J. Org. Chem.
1961,
26:
3280
21a
Denmark SE.
Marcin LR.
Schnute ME.
Thorarensen A.
Org. Synth.
1997,
74:
33
21b
Lu L.
Shoemaker RK.
Wheeler DMS.
Tetrahedron Lett.
1989,
30:
6993
21c
Kulp SS.
Schmoyer RW.
Freeze DE.
Buzas J.
J. Org. Chem.
1975,
40:
453
22 For an eight-membered cyclization with modest regioselectivity, see: Luyten M.
Keese R.
Tetrahedron
1986,
42:
1687
23a
Toro A.
Nowak P.
Deslongchamps P.
J. Am. Chem. Soc.
2000,
122:
4526
23b
Piers E.
Abeysekera BF.
Herbert DJ.
Suckling ID.
Can. J. Chem.
1985,
63:
3418
24 The pKa values of ethyl acetate and acetonitrile in water are 25 (see following) and 30 (see ref. 3a), respectively: Pearson RG.
Dillon RL.
J. Am. Chem. Soc.
1953,
75:
2439
25
Bug T.
Mayr H.
J. Am. Chem. Soc.
2003,
125:
12980
For recent examples of chemoselective reductions of esters in the presence of nitriles, see:
26a
Banerjee AK.
Castillo-Melendez JA.
Vera W.
Azocar JA.
Laya MS.
J. Chem. Res.
2000,
324
26b
Zeng C.-M.
Han M.
Covey DF.
J. Org. Chem.
2000,
65:
2264
27
Fleming FF.
Funk LA.
Altundas R.
Sharief V.
J. Org. Chem.
2002,
67:
9414
28a
Dehmlow E.
Kunesch E.
Liebigs Ann. Chem.
1985,
1904
28b
Stetter H.
Kuhlmann H.
Liebigs Ann. Chem.
1979,
944
28c
Stetter H.
Kuhlmann H.
Liebigs Ann. Chem.
1979,
303
29a
Stetter H.
Marten K.
Liebigs Ann. Chem.
1982,
250
29b
Stetter H.
Marten K.
Liebigs Ann. Chem.
1982,
240
29c
Stetter H.
Kuhlmann H.
Liebigs Ann. Chem.
1979,
1122
30
Risch N.
Z. Naturforsch., B
1986,
41:
787
31a
Grossman RB.
Rasne RM.
Org. Lett.
2001,
3:
4027
31b
Grossman RB.
Synlett
2001,
13
31c
Grossman RB.
Pendharkar DS.
Rasne RM.
Varner MA.
J. Org. Chem.
2000,
65:
3255
31d
Grossman RB.
Rasne RM.
Patrick BO.
J. Org. Chem.
1999,
64:
7173
31e
Grossman RB.
Varner MA.
Skaggs AJ.
J. Org. Chem.
1999,
64:
340
31f
Grossman RB.
Pendharkar DS.
Patrick BO.
J. Org. Chem.
1999,
64:
7178
32a
Xie Z.-F.
Sakai K.
J. Org. Chem.
1990,
55:
820
32b
Xie Z.-F.
Suemune H.
Sakai K.
Synth. Commun.
1989,
19:
987
33a
Bhattacharyya PC.
J. Inst. Chem. (Calcutta)
1994,
66:
30
33b
Coates RM.
Shah SK.
Mason RW.
J. Am. Chem. Soc.
1979,
101:
6765
33c
Banerjee DK.
Chatterjee S.
Pillai CN.
Bhatt MV.
J. Am. Chem. Soc.
1956,
78:
3769
33d
Johnson WS.
Shelberg WE.
J. Am. Chem. Soc.
1945,
67:
1754
33e
Johnson WS.
Shelberg WE.
J. Am. Chem. Soc.
1945,
67:
1745
33f
Manson AJ.
Sonner FW.
Neumann HC.
Christiansen RG.
Clarke RL.
Ackerman JH.
Page DF.
Dean JW.
Phillips DK.
Potts GO.
Arnold A.
Beyler AL.
Clinton RO.
J. Med. Chem.
1963,
6:
1
34a
Honda Y.
Honda T.
Roy S.
Gribble GW.
J. Org. Chem.
2003,
68:
4991
34b
Meyer WL.
Huffman RW.
Schroeder PG.
Tetrahedron
1968,
24:
5959
35a
Schleigh WR.
Popp FD.
J. Chem. Soc. C
1966,
760
35b
Bhide GV.
Tikotkar NL.
Tilak BD.
Chem. Ind. (London)
1957,
1319
35c
Johnson WS.
Petersen JW.
Gutsche CD.
J. Am. Chem. Soc.
1947,
69:
2942
35d
Johnson WS.
Petersen JW.
Gutsche CD.
J. Am. Chem. Soc.
1945,
67:
2274
36
Subramanian LR.
Introduction of the Cyano Group by Substitution of Metals, In Science of Synthesis, Vol. 19
Murahashi S.-I.
Georg Thieme;
Stuttgart:
2004.
p.163
37a
Parfitt RT.
J. Chem. Soc. C
1967,
140
37b
Kuehne ME.
J. Am. Chem. Soc.
1959,
81:
5400
38
Enders D.
Pathak VN.
Weuster P.
Chem. Ber.
1992,
125:
515
39 For an isolated cyanation with benzylthiocyanate, see: Krug P.
Rudolph A.
Weedon AC.
Tetrahedron Lett.
1993,
34:
7221
40
Kahne D.
Collum DB.
Tetrahedron Lett.
1981,
22:
5011
41
Murray RE.
Zweifel G.
Synthesis
1980,
150
42
Rodriguez C.
Lamazouere A.-M.
Sotiropoulos J.
C. R. Seances Acad. Sci., Ser. C
1980,
291:
179
43 Tosyl cyanide is commercially available, whereas phenyl cyanate is easily synthesized: Martin D.
Bauer M.
Org. Synth.
1982,
61:
35
44
Chatterjee A.
Roy D.
Chatterjee SK.
Synthesis
1981,
449
45a
Buttke K.
Niclas H.-J.
Synth. Commun.
1994,
24:
3241
45b
Martin D.
Rackow S.
Chem. Ber.
1965,
98:
3662
45c
Grigat E.
Pütter R.
Mühlbauer E.
Chem. Ber.
1965,
98:
3777
46
Rasmussen JK.
Hassner A.
Synthesis
1973,
682
47
Buttke K.
Niclas H.-J.
J. Prakt. Chem.
1998,
340:
669
48a
Moore HW.
Acc. Chem. Res.
1979,
12:
125
48b For reactions of chlorocyanoketene, see: Fishbein PL.
Moore HW.
Org. Synth.
1990,
69:
205
49
Moore HW.
Gheorghiu MD.
Chem. Soc. Rev.
1981,
10:
289
Modestly electron-rich alkenes favor a zwitterionic mechanism:
50a
Gheorghiu MD.
Pârvulescu L.
Drâghici C.
Mihai M.
Popescu A.
Rev. Roum. Chim.
1996,
41:
283
50b
Al-Husaini AH.
Muqtar M.
Ali SA.
Tetrahedron
1991,
47:
7719
For recent examples since previous reviews (refs. 48 and 49), see:
51a
Al-Husaini AH.
Khan I.
Ali SA.
Tetrahedron
1991,
47:
3845
51b
Nguyen NV.
Chow K.
Moore HW.
J. Org. Chem.
1987,
52:
1315
51c
Fishbein PL.
Moore HW.
J. Org. Chem.
1985,
50:
3226
51d
Al-Husaini AH.
Moore HW.
J. Org. Chem.
1985,
50:
2595
51e
Fishbein PL.
Moore HW.
J. Org. Chem.
1984,
49:
2190
51f
Malherbe R.
Rist G.
Bellus D.
J. Org. Chem.
1983,
48:
860
52
Eliel EL.
Wilen SH.
Mander LN.
Stereochemistry of Organic Compounds
Wiley;
New York:
1994.
p.696-697
53
Bamfield HA.
Brook PR.
Hunt K.
J. Chem. Soc., Chem. Commun.
1976,
146
54a
Scheeren HW.
Frissen AE.
Synthesis
1983,
794
54b
Amice P.
Conia JM.
Bull. Soc. Chim. Fr.
1974,
1015
55
Kniep CS.
Padias AB.
Hall HK.
Tetrahedron
2000,
56:
4279
56a
Madsen JØ.
Lawesson S.-O.
Tetrahedron
1974,
30:
3481
56b
Ficini J.
Touzin A.-M.
Bull. Soc. Chim. Fr.
1972,
2385
56c For an alternative enamine hydrolysis, see: Cobb RL.
Mahan JE.
J. Org. Chem.
1977,
42:
1948
57
Föhlisch B.
Herter R.
Wolf E.
Stezowski JJ.
Eckle E.
Chem. Ber.
1982,
115:
355
58
Föhlisch B.
Herter R.
Wolf E.
J. Chem. Res., Synop.
1986,
128
59
Habib R.
Husain M.
Fazal A.
Husain M.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
1988,
27:
584
60 For a successful displacement on a five-membered oxonitrile, see: Johnson WS.
Anderson JM.
Shelberg WE.
J. Am. Chem. Soc.
1944,
66:
218
61a
Moore HW.
Chem. Soc. Rev.
1974,
2:
415
61b For a recent example, see: McComas CC.
Perales JB.
Van Vranken DL.
Org. Lett.
2002,
4:
2337
62a
Pasto DJ.
Sugi KD.
J. Org. Chem.
1991,
56:
3795
62b
Baldwin JE.
Roy UV.
J. Chem. Soc. D
1969,
1225
62c
Hall HK.
Blanchard EP.
Cherkofsky SC.
Sieja JB.
Sheppard WA.
J. Am. Chem. Soc.
1971,
93:
110
62d
Cripps HN.
Williams JK.
Sharkey WH.
J. Am. Chem. Soc.
1959,
81:
2723
63
Caine D.
Kotian PL.
J. Org. Chem.
1992,
57:
6587
64
Hynes J.
Overman LE.
Nasser T.
Rucker PV.
Tetrahedron Lett.
1998,
39:
4647
65
Yang Y.
Haino T.
Usui S.
Fukazawa Y.
Tetrahedron
1996,
52:
2325
66a
Podlech J.
Introduction of the Cyano Group by Conjugate Addition, In Science of Synthesis, Vol. 19
Murahashi S.-I.
Georg Thieme;
Stuttgart:
2004.
p.311
66b
Nagata W.
Yoshioka M.
Org. React.
1977,
25:
255
66c For an alternative conjugate cyanation with tert -butyl isocyanide, see: Ito Y.
Kato H.
Imai H.
Saegusa T.
J. Am. Chem. Soc.
1982,
104:
6449
67 A SciFinder search failed to locate any examples of additions to cyclobutenones.
68a
Díez E.
Fernández R.
Martín-Zamora E.
Pareja C.
Prieto A.
Lassalaetta JM.
Tetrahedron: Asymmetry
1999,
10:
1145
68b
Díez E.
Fernández R.
Gasch C.
Lassaletta JM.
Llera JM.
Martín-Zamora E.
Vázquez J.
J. Org. Chem.
1997,
62:
5144
68c
Lassaletta J.-M.
Fernández R.
Martín-Zamora E.
Díez E.
J. Am. Chem. Soc.
1996,
118:
7002
69
Andresen S.
Margaretha P.
J. Chem. Res., Synop.
1995,
455
70a
Zhu J.-L.
Shia K.-S.
Liu H.-J.
Chem. Commun.
2000,
1599
70b
Honda T.
Rounds BV.
Bore L.
Favaloro FG.
Gribble GW.
Suh N.
Wang Y.
Sporn MB.
Bioorg. Med. Chem. Lett.
1999,
9:
3429
71a
Rosowsky A.
Papoulis AT.
Queener SF.
J. Med. Chem.
1998,
41:
913
71b
Kotake Y.
Iijima A.
Yoshimatsu K.
Tamai N.
Ozawa Y.
Koyanagi N.
Kitoh K.
Nomura H.
J. Med. Chem.
1994,
37:
1616
72
Kuehne ME.
Nelson JA.
J. Org. Chem.
1970,
35:
161
73
Rissafi B.
Rachiqi N.
ElLouzi A.
Loupy A.
Petiti A.
Fkih-Tétouani S.
Tetrahedron
2001,
57:
2761
74
Huynh C.
Julia S.
Bull. Soc. Chim. Fr.
1971,
4396
75
Fleming FF.
Shook BC.
Org. Synth.
2001,
77:
254
76a
Fleming FF.
Huang A.
Sharief VA.
Pu Y.
J. Org. Chem.
1999,
64:
2830
76b
Fleming FF.
Huang A.
Sharief VA.
Pu Y.
J. Org. Chem.
1997,
62:
3036
77a
Haase-Held M.
Hatzis M.
Mann J.
J. Chem. Soc., Perkin Trans. 1
1993,
2907
77b
Haase-Held M.
Hatzis M.
Mann J.
J. Chem. Soc., Perkin Trans. 1
1992,
2999
78a
Liu H.-J.
Ho Y.-L.
Wu J.-D.
Shia K.-S.
Synlett
2001,
1805
78b
Wu J.-D.
Shia K.-S.
Liu H.-J.
Tetrahedron Lett.
2001,
42:
4207
78c
Honda T.
Gribble GW.
Suh N.
Finlay HJ.
Rounds BV.
Bore L.
Favaloro FG.
Wang Y.
Sporn MB.
J. Med. Chem.
2000,
43:
1866
79
Liu H.-J.
Yip J.
Synlett
2000,
1119
80
Margaretha P.
Andresen S.
J. Photochem. Photobiol., A
1998,
112:
135
81
Bienfait B.
Coppe-Motte G.
Merényi R.
Viehe HG.
Sicking W.
Sustmann R.
Tetrahedron
1991,
47:
8167
82a
Curran DP.
Seong CM.
Tetrahedron
1992,
48:
2157
82b
Curran DP.
Seong CM.
J. Am. Chem. Soc.
1990,
112:
9401
83
Vidal J.
Huet F.
Tetrahedron Lett.
1986,
32:
3733
84a
Wang Y.
Doering WvE.
Staples RJ.
J. Chem. Crystallogr.
1999,
29:
977
84b
Cronyn MW.
Goodrich JE.
J. Am. Chem. Soc.
1952,
74:
3331
85a
Zimmerman HE.
Pasteris RJ.
J. Org. Chem.
1980,
45:
4864
85b
Agosta WC.
Lowrance WW.
J. Org. Chem.
1970,
35:
3851
85c
Agosta WC.
Lowrance WW.
Tetrahedron Lett.
1969,
3053
86a
Ohmori N.
J. Chem. Soc., Perkin Trans. 1
2002,
755
86b
Ohmori N.
Chem. Commun.
2001,
1552
86c
Magnus P.
Waring MJ.
Olliveir C.
Lynch V.
Tetrahedron Lett.
2001,
42:
4947
86d
Magnus P.
Booth J.
Diorazio L.
Donohoe T.
Lynch V.
Magnus N.
Mendoza J.
Pye P.
Tarrant J.
Tetrahedron
1996,
52:
14103
86e
Bauta W.
Booth J.
Bos ME.
DeLuca M.
Diorazio L.
Donohoe T.
Magnus N.
Magnus P.
Mendoza J.
Pye P.
Tarrant J.
Thom S.
Ujjainwalla F.
Tetrahedron Lett.
1995,
36:
5327
86f
Aundenaert F.
De Keukeleire D.
Vandewalle M.
Tetrahedron
1987,
43:
5593
86g
Isobe M.
Nishikawa T.
Pikul S.
Goto T.
Tetrahedron Lett.
1987,
28:
6485
87 Selenium dioxide oxidation is inefficient: Mousseron M.
Jacquier R.
Fontaine A.
Zagdoun R.
Bull. Soc. Chim. Fr.
1954,
1246
88
Fleming FF.
Zhang Z.
Wang Q.
Steward OW.
Angew. Chem. Int. Ed.
2004,
43:
1126
89
Fleming FF.
Zhang Z.
Wei G.
Synthesis
2005,
3179
90a
Yang WQ.
Chen SZ.
Huang L.
Chin. Chem. Lett.
1998,
9:
233
90b
Kuemmerie EW.
Rettig TA.
Stille JK.
J. Org. Chem.
1975,
40:
3665
91
Nicolaou KC.
Gray DLF.
Montagnon T.
Harrison ST.
Angew. Chem. Int. Ed.
2002,
41:
996
92a
Kurihara T.
Miki M.
Yoneda R.
Harusawa S.
Chem. Pharm. Bull.
1986,
34:
2747
92b
Harusawa S.
Miki M.
Yoneda R.
Kurihara T.
Chem. Pharm. Bull.
1985,
33:
2164
93
Mease RC.
Hirsch JA.
J. Org. Chem.
1984,
49:
2925
94 A limited number of nitrile-substituted pyridones occur naturally: Fleming FF.
Nat. Prod. Rep.
1999,
16:
597
95 For two examples of ‘oxonitrile-containing’ drugs, see: Milrinone lactate and Trilostane. Pharmaceutical Substances: Synthesis, Patents, Applications
Kleeman A.
Engel J.
Thieme: Stuttgart:
2001.
p.4th ed
96a
Chase BH.
Walker J.
J. Chem. Soc.
1953,
3518
96b
Auwers KV.
Bahr T.
Wegner G.
Wiegand C.
Ber. Dtsch. Chem. Ges.
1928,
61:
408
96c
Mitchell AD.
Thorpe JF.
J. Chem. Soc.
1910,
2261
96d
Best SR.
Thorpe JF.
J. Chem. Soc.
1909,
685
96e
Moors CW.
Thorpe JF.
J. Chem. Soc.
1908,
165
97a
Satoh T.
Ota H.
Tetrahedron
2000,
56:
5113
97b
Mandal AN.
Raychaudhuri SR.
Chatterjee A.
Synthesis
1983,
727
97c
Lamant M.
Le Guillanton G.
C. R. Seances Acad. Sci., Ser. C
1969,
268:
536
97d
Lamant M.
C. R. Hebd. Seances Acad. Sci.
1965,
261:
2670
97e
Fuson RC.
Wolf DE.
J. Am. Chem. Soc.
1939,
61:
1940
98
Riobé O.
Lamant M.
Larcher G.
Bull. Soc. Chim. Fr.
1960,
1535
Activated allylic bromidesa or non-activated iodidesb alkylate on carbon, whereas allylic chloridesb and mesylatesb alkylate on oxygen:
99a
Süsse M.
Hájicek J.
Hesse M.
Helv. Chim. Acta
1985,
68:
1986
99b
Ziegler FE.
Nangia A.
Schulte G.
J. Am. Chem. Soc.
1987,
109:
3987
100
Baty JD.
Jones G.
Moore C.
J. Org. Chem.
1969,
34:
3295
101
Tanaka T.
Azuma T.
Fang X.
Uchida S.
Iwata C.
Ishida T.
In Y.
Maezaki N.
Synlett
2000,
33
102
Bailey PD.
Morgan KM.
Smith DI.
Vernon JM.
J. Chem. Soc., Perkin Trans. 1
2000,
3566
103
Trost BM.
Fraisse PL.
Ball ZT.
Angew. Chem. Int. Ed.
2002,
41:
1059
104
Liu H.-J.
Zhu J.-L.
Shia K.-S.
Tetrahedron Lett.
1998,
39:
4183
105
Taylor EC.
McKillop A.
Shvo Y.
Hawks GH.
Tetrahedron
1967,
23:
2081
106
Kotake Y.
Okauchi T.
Iijima A.
Yoshimatsu K.
Nomura H.
Chem. Pharm. Bull.
1995,
43:
829
107
Lamant M.
C. R. Hebd. Seances Acad. Sci.
1959,
248:
3714
108
McElvain SM.
Mullineaux RD.
J. Am. Chem. Soc.
1952,
74:
1811
109a
Abarbri M.
Guignard A.
Lamant M.
Helv. Chim. Acta
1995,
78:
109
109b
Lamant M.
Guignard A.
C. R. Seances Acad. Sci., Ser. C
1975,
281:
123
110
Lin H.-S.
Rampersaud AA.
Zimmerman K.
Steinberg MI.
Boyd DB.
J. Med. Chem.
1992,
35:
2658
111
Riobé O.
Lamant M.
Le Guillanton G.
Bull. Soc. Chim. Fr.
1959,
1954
112
Cariou M.
Lamant M.
Normant H.
C. R. Seances Acad. Sci., Ser. C
1974,
278:
1457
113a
Coates RM.
Hobbs SJ.
J. Org. Chem.
1984,
49:
140
113b
Coates RM.
Shah SK.
Mason RW.
J. Am. Chem. Soc.
1982,
104:
2198
114
Coates RM.
Rogers BD.
Hobbs SJ.
Peck DR.
Curran DP.
J. Am. Chem. Soc.
1987,
109:
1160
115a
Ziegler FE.
Metcalf CA.
Nangia A.
Schulte G.
J. Am. Chem. Soc.
1993,
115:
2581
115b
Ziegler FE.
Nangia A.
Schulte G.
Tetrahedron Lett.
1988,
29:
1669
116
Enders D.
Zamponi A.
Raabe G.
Runsink J.
Synthesis
1993,
725
117 For a discussion of the alkylation stereoselectivity, see: Fleming FF.
Zhang Z.
Tetrahedron
2005,
61:
747
118
Kuehne ME.
J. Org. Chem.
1970,
35:
171
119
Debal A.
Cuvigny T.
Larcheveque M.
Tetrahedron Lett.
1977,
36:
3187
120 The pKa values of acetonitrile and acetone are 29 (see ref. 3a) and 24, respectively: Bordwell FG.
Matthews WS.
J. Am. Chem. Soc.
1974,
96:
1216
121a
Vigier A.
Dreux J.
Bull. Soc. Chim. Fr.
1963,
677
121b
Lamant M.
C. R. Hebd. Seances Acad. Sci.
1956,
242:
380
121c
Iwanoff C.
Chem. Ber.
1954,
87:
1600
122
Lamant M.
Louis M.
C. R. Hebd. Seances Acad. Sci.
1961,
252:
2736
123a
Milenkov B.
Guggisberg A.
Hesse M.
Helv. Chim. Acta
1987,
70:
760
123b
Milenkov B.
Hesse M.
Helv. Chim. Acta
1987,
70:
308
123c
Goulaouic-Dubois C.
Guggisberg A.
Hesse M.
Tetrahedron
1995,
51:
12035
124a
Stevens RV.
Gaeta FCA.
J. Am. Chem. Soc.
1977,
99:
6105
124b
Meyer WL.
Goodwin TE.
Hoff RJ.
Sigel CW.
J. Org. Chem.
1977,
42:
2761
124c
Le Guillanton G.
Lamant M.
C. R. Chim.
1969,
268:
864
124d
Bottom FH.
McQuillin FJ.
Tetrahedron Lett.
1968,
459
125
Kido F.
Noda Y.
Yoshikoshi A.
J. Am. Chem. Soc.
1982,
104:
5509
126
Deutsch J.
Niclas H.-J.
Ramm M.
J. Prakt. Chem.
1995,
337:
23
127
Liu H.-J.
Ly TW.
Tai C.-L.
Wu J.-D.
Liang J.-K.
Guo J.-C.
Tseng N.-W.
Shia K.-S.
Tetrahedron
2003,
59:
1209
128
Milenkov B.
Süsse M.
Hesse M.
Helv. Chim. Acta
1985,
68:
2115
129a
Tai C.-L.
Ly TW.
Wu J.-D.
Shia K.-S.
Liu H.-J.
Synlett
2001,
214
129b
Olkhovik V.
Masalov N.
Jansen BJM.
de Groot A.
Tetrahedron Lett.
2001,
42:
4903
130a
Meyer WL.
Sigel CW.
Tetrahedron Lett.
1967,
2485
130b
Meyer WL.
Clemans GB.
Huffman RW.
Tetrahedron Lett.
1966,
4255
131
Nussbaumer C.
Helv. Chim. Acta
1990,
73:
1621
132
Jansen BJM.
Hendrikx CCJ.
Masalov N.
Stork GA.
Meulemans TM.
Macaev FZ.
de Groot A.
Tetrahedron
2000,
56:
2075
133
Hamzaoui M.
Provot O.
Grégoire F.
Riche C.
Chiaroni A.
Gay F.
Moskowitz H.
Mayrargue J.
Tetrahedron: Asymmetry
1997,
8:
2085
134
Loewenthal HJE.
Isr. J. Chem.
1966,
4:
31
135
Swarts HJ.
Verstegen-Haaksma AA.
Jansen BJM.
de Groot A.
Tetrahedron
1994,
50:
10083
136
Verstegen-Haaksma AA.
Swarts HJ.
Jansen BJM.
de Groot A.
Tetrahedron
1994,
50:
10073
137 Direct attempts at generating 138 by conjugate addition of various metal enolates with different Michael acceptors were not successful, leading to a multistep sequence in which the angular nitrile was introduced by cyanide addition to an appropriately substituted enone: Girard M.; Studies directed towards the total synthesis of pentacyclic triterpenes, Ph.D. dissertation; Carleton University, Canada; 1985
138
Girard M.
ApSimon JW.
Huber CP.
Can. J. Chem.
1987,
65:
191
139 For electrochemical reduction to cis -hydroxynitriles, see: Le Guillanton G.
Lamant M.
New J. Chem.
1978,
2:
157
140
Levy LM.
Gotor V.
J. Org. Chem.
2004,
69:
2601
141
Bailey PD.
Hollinshead SP.
Moore MH.
Morgan KM.
Smith DY.
Vernon JM.
Tetrahedron Lett.
1994,
35:
3585
142
Mehmandoust M.
Buisson D.
Azerad R.
Tetrahedron Lett.
1995,
36:
6461
143
Dehli JR.
Gotor V.
J. Org. Chem.
2002,
67:
1716
144a
Lamant M.
Mornet R.
Bull. Soc. Chim. Fr.
1965,
3041
144b
Lamant M.
Riobé O.
Bussière F.
Bull. Soc. Chim. Fr.
1963,
2895
144c
Lamant M.
C. R. Chim.
1958,
246:
2380
145a
Riobé O.
Lamant M.
Bussière F.
C. R. Hebd. Seances Acad. Sci.
1963,
256:
4026
145b
Riobé O.
Lamant M.
Bussière F.
Bull. Soc. Chim. Fr.
1963,
2892
146
Marshall JA.
Karas LJ.
Royce DR.
J. Org. Chem.
1979,
44:
2994
147
Shia K.-S.
Jan N.-W.
Zhu J.-L.
Ly TW.
Liu H.-J.
Tetrahedron Lett.
1999,
40:
6753
148
Kutney JP.
Gunning PJ.
Clewly RG.
Somerville J.
Rettig SJ.
Can. J. Chem.
1992,
70:
2094 ; for the reduction with NaBH4 without CeCl3 , see reference 86f
149
Arseniyadis S.
Kyler KS.
Watt DS.
Org. React.
1984,
31:
1
150
Fleming FF.
Zhang Z.
Wei G.
Steward OW.
Org. Lett.
2005,
7:
447
151
Gololobov YG.
Gruber W.
Russ. Chem. Rev.
1997,
66:
953
152 Nitriles are powerful inductive stabilizing groups with weak delocalizing effects.
[3a ]
[c ]
[d ]
153a
Fleming FF.
Pu Y.
Tercek F.
J. Org. Chem.
1997,
62:
4883
153b For Grignard additions to five-membered oxonitriles, see: Kung L.-R.
Tu C.-H.
Shia K.-S.
Liu H.-J.
Chem. Commun.
2003,
2490
153c
Pan L.-R.
Tokoroyama T.
Chem. Lett.
1990,
1999
154a
Ivanyuk TV.
Kadushkin AV.
Solov"eva NP.
Granik VV.
Mendeleev Commun.
1993,
3:
160
154b
Strakov AY.
Polis OP.
Sliede YB.
Gundrinietce EY.
Izv. Akad. Nauk Latv. SSR, Ser. Khim.
1977,
337 ; Chem. Abstr. 1977 , 87 , 151737
154c
Akhrem AA.
Moiseenkov AM.
Strakov AY.
Andaburskaya MB.
Bull. Acad. Sci. USSR, Div. Chem. Sci.
1973,
4:
811
154d
Strakov AY.
Andaburskaya MB.
Moiseenkov AM.
Izv. Akad. Nauk Latv. SSR, Ser. Khim.
1973,
836 ; Chem. Abstr. 1973 , 79 , 31545
155
McQuaid KM.
Pettus TRR.
Synlett
2004,
2403
156
Herter R.
Föhlisch B.
Chem. Ber.
1982,
115:
381
157a
Tortajada J.
Van Hemelryck B.
Morizur J.-P.
Bull. Soc. Chim. Fr.
1985,
243
157b
Tortajada J.
Van Hemelryck B.
Morizur J.-P.
Tetrahedron
1984,
40:
613
157c
Tortajada J.
Morizur J.-P.
Bull. Soc. Chim. Belg.
1986,
95:
253
157d
Tokuda M.
Watanabe Y.
Itoh M.
Bull. Chem. Soc. Jpn.
1978,
51:
905
157e
Chip GK.
Lynch TR.
Can. J. Chem.
1974,
52:
2249
157f
Chip GK.
Lynch TR.
J. Chem. Soc., Chem. Commun.
1973,
641
158
Rüedi G.
Oberli MA.
Hansen H.-J.
Tetrahedron Lett.
2004,
45:
7887
159 For azide alkylation-fragmentation, see: Ognyanov VI.
Hesse M.
Helv. Chim. Acta
1991,
74:
899
160a
Martínez AG.
Vilar ET.
Fraile AG.
de la Moya Cerero S.
Maroto BL.
Tetrahedron: Asymmetry
2001,
12:
189
160b
Smith EM.
Shapiro EL.
Teutsch G.
Weber L.
Herzog HL.
McPhail AT.
Tschang P.-SW.
Meinwald J.
Tetrahedron Lett.
1974,
3519
160c
Meyer RE.
Helv. Chim. Acta
1933,
16:
1291
160d
Lapworth A.
J. Chem. Soc.
1900,
1053
161
Hesse M.
Milenkov B.
Stojanova DS.
Helv. Chim. Acta
1993,
76:
2303
162a
Ognyanov VI.
Hesse M.
Helv. Chim. Acta
1990,
73:
272
162b
Ognyanov VI.
Hesse M.
Helv. Chim. Acta
1989,
72:
1522
163
Ivancev W.
Ognyanov VI.
Hesse M.
Tetrahedron
1996,
57:
4363
164
Campaigne E.
Forsch RA.
J. Org. Chem.
1978,
43:
1044
165
Cocker W.
Grayson DH.
Shannon PVR.
J. Chem. Soc., Perkin Trans. 1
1995,
1153
166
Andresen S.
Margaretha P.
J. Chin. Chem. Soc. (Taipei)
1995,
42:
991
For related reactions with pyran-containing oxonitriles, see:
167a
Seth PP.
Totah NI.
Org. Lett.
1999,
1:
1411
167b
Seth PP.
Totah NI.
J. Org. Chem.
1999,
64:
8750
167c
Chen D.
Wang J.
Totah NI.
J. Org. Chem.
1999,
64:
1776
167d
Hsung RP.
Zificsak CA.
Wei L.-L.
Zehnder LR.
Park F.
Kim M.
Tran T.-TT.
J. Org. Chem.
1999,
64:
8736
167e
Hsung RP.
J. Org. Chem.
1997,
62:
7904
168
Lee I.
Han ES.
Haksurwon Nonmunjip Cha’yon Kwahak P’yon
1983,
22:
43 ; Chem. Abstr. 1984 , 101 , 509891
169a
Saito I.
Shimozono K.
Matsurura T.
J. Org. Chem.
1982,
47:
4356
169b
Cantrell TS.
Tetrahedron
1971,
27:
1227
170a
Lange GL.
Gottardo C.
Magn. Reson. Chem.
1996,
34:
660
170b
Kirmse W.
Schoen S.
Croat. Chem. Acta
1992,
65:
551
170c
Serebryakov EP.
Kulomzina-Pletneva SD.
Margaryan AK.
Tetrahedron
1979,
35:
77
171a
Mallik R.
Chatterjee A.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
1993,
32:
811
171b
Burgstahler AW.
Mosettic E.
J. Am. Chem. Soc.
1959,
81:
3697
171c
Collins RJ.
Brown EV.
J. Am. Chem. Soc.
1957,
79:
1103
171d
Banerjee DK.
Chatterjee S.
Pillai CN.
Bhatt MV.
J. Am. Chem. Soc.
1956,
78:
3769
172
Ognyanov VI.
Hesse M.
Helv. Chim. Acta
1987,
70:
1393
173
Cannella R.
Clerici F.
Gelmi ML.
Penso M.
Pocar D.
J. Org. Chem.
1996,
61:
1854
174
Plescia S.
Aiello E.
Daidone G.
Sprio V.
J. Heterocycl. Chem.
1976,
13:
395
175
Zhu J.-L.
Shia K.-S.
Liu H.-J.
Tetrahedron Lett.
1999,
40:
7055