Subscribe to RSS
DOI: 10.1055/s-2006-926428
Heck Reaction of Protected Alk-1-en-3-ol, -4-ols, -5-ol or -6-ol with Aryl Bromides Catalysed by a Palladium Complex Derived from a Tetraphosphine
Publication History
Publication Date:
11 April 2006 (online)
Abstract
The tetraphosphine cis,cis,cis-1,2,3,4-tetrakis(diphenylphosphinomethyl)cyclopentane in combination with [Pd(C3H5)Cl]2 affords a very efficient catalyst for the Heck reaction of protected alk-1-en-3-ols, -4-ols, -5-ols or -6-ols with aryl bromides. With 3-benzyloxyhex-1-ene or 4-benzyloxypent-1-ene, the (E)-1-aryl-3-benzyloxyhex-1-ene or (E)-1-aryl-4-benzyloxypent-1-ene derivatives were regio- and stereoselectively obtained. The protected ethylenic primary alcohols 4-benzyloxybut-1-ene, 4-tetrahydropyranyloxybut-1-ene, 5-tetrahydropyranyloxypent-1-ene and 6-tetrahydropyranyloxyhex-1-ene led in general to the (E)-1-aryl-4-benzyloxybut-1-ene or (E)-1-aryltetrahydropyranyloxyalk-1-enes as major isomers. However, with these substrates, the migration of the double bond was observed, and mixtures of isomers were obtained in most cases. The selectivities of the reactions depend both on electronic and steric factors. With electron-poor aryl bromides higher selectivities in favour of 1-arylalk-1-enol derivatives were generally obtained than with electron-rich aryl bromides. In the presence of sterically congested aryl bromides, larger amounts of products resulting from the migration of the double bond were observed. For example from 2,4,6-triisopropylbromobenzene and 6-tetrahydropyranyloxyhex-1-ene, 6-(2,4,6-triisopropylphenyl)hexanal was obtained as major product after deprotection. For most of these reactions, similar reactions-rates were observed with electron-poor and electron-rich aryl bromides. Several reactions can be performed with as little as 0.1% catalyst.
Key words
Heck reaction - tetraphosphine ligand - alkenols - aryl bromides
- 1
de Meijere A.Meyer F. Angew. Chem., Int. Ed. Engl. 1994, 33: 2379 - 2
Reetz MT. In Transition Metal Catalysed ReactionsDavies SG.Murahashi S.-I. Blackwell; Oxford: 1999. - 3
Beletskaya I.Cheprakov A. Chem. Rev. 2000, 100: 3009 - 4
Whitcombe N.Hii KKM.Gibson S. Tetrahedron 2001, 57: 7449 - 5
Littke A.Fu G. Angew. Chem. Int. Ed. 2002, 41: 4176 - 6
Farina V. Adv. Synth. Catal. 2004, 346: 1553 - 7
Jeffery T. Chem. Commun. 2005, 1287 - 8
Muzart J. Tetrahedron 2005, 61: 4179 - 9
Ono K.Fugami K.Tanaka S.Tamaru Y. Tetrahedron Lett. 1994, 35: 4133 - 10
Fukuyama T.Chen X.Peng G. J. Am. Chem. Soc. 1994, 116: 3127 - 11
Motoba K.Motofusa S.-I.Cho CS.Ohe K.Uemura S. J. Organomet. Chem. 1999, 574: 3 - 12
Nokami J.Furukawa A.Okuda Y.Hazato A.Kurozumi S. Tetrahedron Lett. 1998, 39: 1005 - 13
Tripathy NK.Georg GI. Tetrahedron Lett. 2004, 45: 5309 - 14
Berthiol F.Doucet H.Santelli M. Eur. J. Org. Chem. 2005, 1367 - 15
Laurenti D.Feuerstein M.Pèpe G.Doucet H.Santelli M. J. Org. Chem. 2001, 66: 1633 - 16
Feuerstein M.Laurenti D.Bougeant C.Doucet H.Santelli M. Chem. Commun. 2001, 325 - 17
Feuerstein M.Berthiol F.Doucet H.Santelli M. Org. Biomol. Chem. 2003, 1: 2235 - 18
Feuerstein M.Doucet H.Santelli M. J. Org. Chem. 2001, 66: 5923 - 19
Feuerstein M.Doucet H.Santelli M. Synlett 2001, 1980 - 20
Feuerstein M.Doucet H.Santelli M. Tetrahedron Lett. 2002, 43: 2191 - 21
Berthiol F.Feuerstein M.Doucet H.Santelli M. Tetrahedron Lett. 2002, 43: 5625 - 22
Berthiol F.Doucet H.Santelli M. Tetrahedron Lett. 2003, 44: 1221 - 23
Berthiol F.Doucet H.Santelli M. Synlett 2003, 841 - 24
Kondolff I.Doucet H.Santelli M. Tetrahedron Lett. 2003, 44: 8487 - 25
Kondolff I.Doucet H.Santelli M. Synlett 2004, 1561 - 26
Berthiol F.Doucet H.Santelli M. Tetrahedron Lett. 2004, 45: 5633 - 27
Lemhadri M.Doucet H.Santelli M. Tetrahedron 2004, 50: 11533 - 28
Berthiol F.Doucet H.Santelli M. Synthesis 2005, 3589