Zusammenfassung
Gentherapie ist eine elegante und grundsätzlich nebenwirkungsarme Alternative zu herkömmlichen Therapiestrategien bei Malignomen. Nach dem Enthusiasmus der 90er-Jahre ist Ernüchterung eingekehrt. Im Rahmen dieser Arbeit werden die Werkzeuge und Stellschrauben der Gentherapie (Vektoren, Promotoren, Targeting, therapeutische Gene) sowie die Wirkprinzipien (Enzym-Prodrug-Therapie; genetische Impfung) erklärt. Die klinischen Protokolle und die wenigen abgeschlossenen klinischen Studien zu gastrointestinalen Tumoren werden kritisch reflektiert und ein Ausblick auf die weitere Entwicklung - auch jenseits der klassischen Gentherapie - gegeben.
Abstract
Gene therapy offers an elegant alternative to toxic chemotherapy regimens, mostly without severe side effects. Gene therapy for cancer was one of the first applications. Following the enthusiasm in the early 1990 s, a more rationale view is preferred today. This general review looks at the tools of gene therapy and their principle elements (vector, promoter, targeting, therapeutic genes). The principles of gene therapy such as gene-directed enzyme prodrug therapy (GDEPT) and gene-directed tumor vaccination are explained. Furthermore, published protocols and clinical studies in gastrointestinal oncology are reviewed. Finally, an outlook is given on the latest developments, some of them going beyond the realm of conventional gene therapy.
Schlüsselwörter
Gentherapie - Lebermetastasen - Pankreaskarzinom
Key words
Gastroenteropancreatic tumors - gene therapy - pancreatic carcinoma - liver metastases
Literatur
1
Chong G, Cunningham D.
Gastrointestinal cancer: recent developments in medical oncology.
Eur J Surg Oncol.
2005;
31 (5)
453-460
2 Culver K W. Gene therapy. A handbook for physicians. New York, NY; Mary Ann Liebert, Inc 1994
3
McCormick F.
Cancer gene therapy: fringe or cutting edge?.
Nat Rev Cancer.
2001;
1 (2)
130-141
4
Raper S E, Chirmule N, Lee F S. et al .
Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer.
Mol Genet Metab.
2003;
80 (1 - 2)
148-158
5
Mayer-Kuckuk P, Banerjee D, Kemeny N. et al .
Molecular therapies for colorectal cancer metastatic to the liver.
Mol Ther.
2002;
5 (5 Pt 1)
492-500
6
Thorne S H, Bartlett D L, Kirn D H.
The use of oncolytic vaccinia viruses in the treatment of cancer: a new role for an old ally?.
Curr Gene Ther.
2005;
5 (4)
429-443
7
Kasuya H, Takeda S, Nomoto S. et al .
The potential of oncolytic virus therapy for pancreatic cancer.
Cancer Gene Ther.
2005;
12 (9)
725-736
8
Seth P.
Vector-Mediated Cancer Gene Therapy: An Overview.
Cancer Biol Ther.
2005;
4 (5)
512-517
9
Saukkonen K, Hemminki A.
Tissue-specific promoters for cancer gene therapy.
Expert Opin Biol Ther.
2004;
4 (5)
683-696
10
Hendrie P C, Russell D W.
Gene targeting with viral vectors.
Mol Ther.
2005;
12 (1)
9-17
11
Zanetti M, Castiglioni P, Rizzi M. et al .
B lymphocytes as antigen-presenting cell-based genetic vaccines.
Immunol Rev.
2004;
199
264-278
12
Kanerva A, Hemminki A.
Adenoviruses for treatment of cancer.
Ann Med.
2005;
37 (1)
33-43
13
Pan X, Li Z S, Xu G M. et al .
Adenovirus-mediated gene transfer in the treatment of pancreatic cancer.
Pancreas.
2003;
26 (3)
274-278
14
Dachs G U, Tupper J, Tozer G M.
From bench to bedside for gene-directed enzyme prodrug therapy of cancer.
Anticancer Drugs.
2005;
16 (4)
349-359
15
Fillat C, Carrio M, Cascante A. et al .
Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase gene/Ganciclovir system: fifteen years of application.
Curr Gene Ther.
2003;
3 (1)
13-26
16
Brown N L, Lemoine N R.
Clinical trials with GDEPT: cytosine deaminase and 5-fluorocytosine.
Methods Mol Med.
2004;
90
451-457
17
Mosolits S, Ullenhag G, Mellstedt H.
Therapeutic vaccination in patients with gastrointestinal malignancies. A review of immunological and clinical results.
Ann Oncol.
2005;
16 (6)
847-862
18
Gleave M E, Monia B P.
Antisense therapy for cancer.
Nat Rev Cancer.
2005;
5 (6)
468-479
19
Cunningham C, Nemunaitis J.
A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. Version: April 9, 2001.
Hum Gene Ther.
2001;
12 (12)
1594-1596
20
Glover D J, Lipps H J, Jans D A.
Towards safe, non-viral therapeutic gene expression in humans.
Nat Rev Genet.
2005;
6 (4)
299-310
21
Scharfmann R, Axelrod J H, Verma I M.
Long-term in vivo expression of retrovirus-mediated gene transfer in mouse fibroblast implants.
Proc Natl Acad Sci U S A.
1991;
88 (11)
4626-4630
22
Brooks A R, Harkins R N, Wang P. et al .
Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle.
J Gene Med.
2004;
6 (4)
395-404
23
White J H.
Modified steroid receptors and steroid-inducible promoters as genetic switches for gene therapy.
Adv Pharmacol.
1997;
40
339-367
24
Walther W, Stein U.
Cell type specific and inducible promoters for vectors in gene therapy as an approach for cell targeting.
J Mol Med.
1996;
74 (7)
379-392
25
Rossi F M, Guicherit O M, Spicher A. et al .
Tetracycline-regulatable factors with distinct dimerization domains allow reversible growth inhibition by p16.
Nat Genet.
1998;
20 (4)
389-393
26
Rossi F M, Blau H M.
Recent advances in inducible gene expression systems.
Curr Opin Biotechnol.
1998;
9 (5)
451-456
27
Lopez C A, Park J O, Mauceri H J. et al .
Control of gene therapy by MDR1 and EGR1 promoter sequences in transcriptional targeting by chemotherapy (Review).
Int J Oncol.
2004;
24 (3)
731-736
28
Löhr M, Bago Z T, Bergmeister H. et al .
Cell therapy using microencapsulated 293 cells transfected a gene construct expressing CYP2B1, an ifosfamide converting enzyme, instilled intra-arterially in patients with advanced-stage pancreatic carcinoma. A phase I-study.
J Mol Med.
1999;
77
393-398
29
Tseng J F, Mulligan R C.
Gene therapy for pancreatic cancer.
Surg Oncol Clin N Am.
2002;
11 (3)
537-569
30
Ruan D T, Warren R S.
Liver-directed therapies in colorectal cancer.
Semin Oncol.
2005;
32 (1)
85-94
31
Kasuya H, Takeda S, Nomoto S. et al .
The potential of oncolytic virus therapy for pancreatic cancer.
Cancer Gene Ther.
2005;
12 (9)
725-736
32
Mulvihill S, Warren R, Venook A. et al .
Safety and feasibility of injection with an E1B-55 kDa gene-deleted, replication-selective adenovirus (ONYX-015) into primary carcinomas of the pancreas: a phase I trial.
Gene Ther.
2001;
8 (4)
308-315
33
Habib N, Salama H, Abd E l Latif Abu Median A. et al .
Clinical trial of E1B-deleted adenovirus (dl1520) gene therapy for hepatocellular carcinoma.
Cancer Gene Ther.
2002;
9 (3)
254-259
34
Reid T, Galanis E, Abbruzzese J. et al .
Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial.
Gene Ther.
2001;
8 (21)
1618-1626
35
Bitzer M, Lauer U M.
[Oncolytic viruses for genetic therapy of gastrointestinal tumors].
Z Gastroenterol.
2003;
41 (7)
667-674
36
Reid T R, Freeman S, Post L. et al .
Effects of Onyx-015 among metastatic colorectal cancer patients that have failed prior treatment with 5-FU/leucovorin.
Cancer Gene Ther.
2005;
12 (8)
673-681
37
Holm P S, Lage H, Bergmann S. et al .
Multidrug-resistant cancer cells facilitate E1-independent adenoviral replication: impact for cancer gene therapy.
Cancer Res.
2004;
64 (1)
322-328
38
Sung M W, Yeh H C, Thung S N. et al .
Intratumoral adenovirus-mediated suicide gene transfer for hepatic metastases from colorectal adenocarcinoma: results of a phase I clinical trial.
Mol Ther.
2001;
4 (3)
182-191
39
Crystal R G, Hirschowitz E, Lieberman M. et al .
Phase I study of direct administration of a replication deficient adenovirus vector containing the E. coli cytosine deaminase gene to metastatic colon carcinoma of the liver in association with the oral administration of the pro-drug 5-fluorocytosine.
Hum Gene Ther.
1997;
8 (8)
985-1001
40
Habib N A, Sarraf C E, Mitry R R. et al .
E1B-deleted adenovirus (dl1520) gene therapy for patients with primary and secondary liver tumors.
Hum Gene Ther.
2001;
12 (3)
219-226
41
Ben-Gary H, McKinney R L, Rosengart T. et al .
Systemic interleukin-6 responses following administration of adenovirus gene transfer vectors to humans by different routes.
Mol Ther.
2002;
6 (2)
287-297
42
Sangro B, Mazzolini G, Ruiz J. et al .
Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors.
J Clin Oncol.
2004;
22 (8)
1389-1397
43
Gilly F N, Sayag-Beaujard A C, Bienvenu J. et al .
Gene therapy with AdV-IL2 (TG 1021) in unresectable digestive adenocarcinoma. Phase I-II study, first inclusions.
Adv Exp Med Biol.
1998;
451
527-530
44
Gilly F N, Beaujard A, Bienvenu J. et al .
Gene therapy with Adv-IL-2 in unresectable digestive cancer: phase I-II study, intermediate report.
Hepatogastroenterology.
1999;
46 Suppl 1
1268-1273
45
Sobol R E, Shawler D L, Carson C. et al .
Interleukin 2 gene therapy of colorectal carcinoma with autologous irradiated tumor cells and genetically engineered fibroblasts: a Phase I study.
Clin Cancer Res.
1999;
5 (9)
2359-2365
46
Habib N A, Hodgson H J, Lemoine N. et al .
A phase I/II study of hepatic artery infusion with wtp53-CMV-Ad in metastatic malignant liver tumours.
Hum Gene Ther.
1999;
10 (12)
2019-2034
47
Havlik R, Jiao L R, Nicholls J. et al .
Gene therapy for liver metastases.
Semin Oncol.
2002;
29 (2)
202-208
48
Shimada H, Matsubara H, Ochiai T.
p53 gene therapy for esophageal cancer.
J Gastroenterol.
2002;
37 Suppl 14
87-91
49
Oohira G, Yamada S, Ochiai T. et al .
Growth suppression of esophageal squamous cell carcinoma induced by heavy carbon-ion beams combined with p53 gene transfer.
Int J Oncol.
2004;
25 (3)
563-569
50
Morse M.
Technology evaluation: Rexin-G, Epeius Biotechnologies.
Curr Opin Mol Ther.
2005;
7 (2)
164-169
51
Gordon E M, Cornelio G H, Lorenzo C C. et al .
First clinical experience using a ‘pathotropic’ injectable retroviral vector (Rexin-G) as intervention for stage IV pancreatic cancer.
Int J Oncol.
2004;
24 (1)
177-185
52
Geissler M, Mohr L, Ali M Y. et al .
Immunobiology and gene-based immunotherapy of hepatocellular carcinoma.
Z Gastroenterol.
2003;
41 (11)
1101-1110
53
Schmidt-Wolf I G, Finke S, Trojaneck B. et al .
Phase I clinical study applying autologous immunological effector cells transfected with the interleukin-2 gene in patients with metastatic renal cancer, colorectal cancer and lymphoma.
Br J Cancer.
1999;
81 (6)
1009-1016
54
Rochlitz C, Jantscheff P, Bongartz G. et al .
Gene therapy study of cytokine-transfected xenogeneic cells (Vero-interleukin-2) in patients with metastatic solid tumors.
Cancer Gene Ther.
1999;
6 (3)
271-281
55
Jaffee E M, Hruban R H, Biedrzycki B. et al .
Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation.
J Clin Oncol.
2001;
19 (1)
145-156
56
Palmer D H, Mautner V, Mirza D. et al .
Virus-directed enzyme prodrug therapy: intratumoral administration of a replication-deficient adenovirus encoding nitroreductase to patients with resectable liver cancer.
J Clin Oncol.
2004;
22 (9)
1546-1552
57
Löhr M, Hoffmeyer A, Kröger J C. et al .
Microencapsulated, cellmediated treatment of inoperable pancreatic carcinoma.
Lancet.
2001;
357
1591-1592
58
Löhr M, Hoffmeyer A, Kröger J C. et al .
Safety, feasibility and clinical benefit of localized chemotherapy using microencapsulated cells for inoperable pancreatic carcinoma: a phase I/II trial.
Cancer Therapy.
2003;
1
121-131
59
Winiarczyk S, Gradski Z, Kosztolich B. et al .
A clinical protocol for treatment of canine mammary tumors using encapsulated, cytochrome P450 synthesizing cells activating cyclophosphamide: a phase I/II study.
J Mol Med.
2002;
80 (9)
610-614
60
Jounaidi Y.
Cytochrome P450-based gene therapy for cancer treatment: from concept to the clinic.
Curr Drug Metab.
2002;
3 (6)
609-622
61
Samel S, Keese M, Lux A. et al .
Peritoneal cancer treatment with CYP2B1 transfected, microencapsulated cells and ifosfamide.
Cancer Gene Ther.
2006;
13 (1)
65-73
62
Pearson A S, Bouvet M, Evans D B. et al .
Gene therapy and pancreatic cancer.
Front Bioscience.
1998;
3
e230-e237
63
Piersanti S, Martina Y, Cherubini G. et al .
Use of DNA microarrays to monitor host response to virus and virus-derived gene therapy vectors.
Am J Pharmacogenomics.
2004;
4 (6)
345-356
64
Bartholomeusz C, Itamochi H, Yuan L X. et al .
Bcl-2 antisense oligonucleotide overcomes resistance to E1A gene therapy in a low HER2-expressing ovarian cancer xenograft model.
Cancer Res.
2005;
65 (18)
8406-8413
65
Baggetto L G, Gambrelle J, Dayan G. et al .
Major cytogenetic aberrations and typical multidrug resistance phenotype of uveal melanoma: current views and new therapeutic prospects.
Cancer Treat Rev.
2005;
31 (5)
361-379
66
Brandt R, Grutzmann R, Bauer A. et al .
DNA microarray analysis of pancreatic malignancies.
Pancreatology.
2004;
4 (6)
587-597
67
Chen R, Yi E C, Donohoe S. et al .
Pancreatic cancer proteome: the proteins that underlie invasion, metastasis, and immunologic escape.
Gastroenterology.
2005;
129 (4)
1187-1197
68
Krause D S, Van Etten R A.
Tyrosine kinases as targets for cancer therapy.
N Engl J Med.
2005;
353 (2)
172-187
69
Jing N, Tweardy D J.
Targeting Stat3 in cancer therapy.
Anticancer Drugs.
2005;
16 (6)
601-607
70
Izquierdo M.
Short interfering RNAs as a tool for cancer gene therapy.
Cancer Gene Ther.
2005;
12 (3)
217-227
71
Pascolo S.
Messenger RNA-based vaccines.
Expert Opin Biol Ther.
2004;
4 (8)
1285-1294
72
Lo H W, Day C P, Hung M C.
Cancer-specific gene therapy.
Adv Genet.
2005;
54
235-255
73
De Laporte L, Cruz R ea J, Shea L D.
Design of modular non-viral gene therapy vectors.
Biomaterials.
2006;
27 (7)
947-954
74
Veronese M L, O’Dwyer P J.
Monoclonal antibodies in the treatment of colorectal cancer.
Eur J Cancer.
2004;
40 (9)
1292-1301
75
Harris M.
Monoclonal antibodies as therapeutic agents for cancer.
Lancet Oncol.
2004;
5 (5)
292-302
76
Stern M, Herrmann R.
Overview of monoclonal antibodies in cancer therapy: present and promise.
Crit Rev Oncol Hematol.
2005;
54 (1)
11-29
77
Gilly F N, Beaujard A, Bienvenu J. et al .
Gene therapy with Adv-Il-2 in unresectable digestive cancer: Phase I-II study, intermediate report.
Hepatogastroenterol.
1999;
46
1268-1273
1 Alle Abkürzungen finden sich im Glossar am Ende des Artikels
Prof. Dr. med. J.-Matthias Löhr, stellv. Klinikdirektor II. Medizinische Klinik
Leiter der Klinischen Kooperationseinheit für Molekulare Gastroenterologie mit dem Deutschen Krebsforschungszentrum (DKFZ E180), Fakultät für Klinische Medizin Mannheim, Ruprecht-Karls-Universität Heidelberg
Theodor Kutzer Ufer 1 - 3
68167 Mannheim
Phone: ++ 49/6 21/3 83 29 00
Fax: ++ 49/6 21/3 83 19 86
Email: matthias.loehr@urz.uni-heidelberg.de
Email: m.loehr@dkfz.de