Aktuelle Rheumatologie 2006; 31(2): 88-93
DOI: 10.1055/s-2006-926671
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Rheumatoide Arthritis - eine T-Zell-abhängige Erkrankung

Rheumatoid Arthritis - a T Cell-Dependent DiseaseA. Skapenko1 , R. Müller1 , H. Schulze-Koops1
  • 1Nikolaus-Fiebiger-Zentrum für Molekulare Medizin, Klinische Forschergruppe III, Medizinische Klinik III und Institut für Klinische Immunologie, Universität Erlangen-Nürnberg, Erlangen
Further Information

Publication History

Publication Date:
15 May 2006 (online)

Zusammenfassung

T-Zellen, insbesondere CD4+-T-Zellen, sind für viele Aspekte der rheumatoiden Entzündungsreaktion verantwortlich. So zeigen CD4+-T-Zellen von Patienten mit rheumatoider Arthritis sowohl in der entzündeten Synovialmembran als auch in der peripheren Zirkulation eine Reihe von funktionellen Veränderungen, die sie als proinflammatorische Effektorzellen ausweisen. Andererseits legen neuere Erkenntnisse nahe, dass die Rolle von CD4+-T-Zellen in der Pathogenese der rheumatoiden Entzündung weit über die der aktivierten Effektorzellen, die eine chronische Autoimmunreaktion initiieren und unterhalten, hinausgeht. Neuere Daten lassen vermuten, dass die Funktion von CD4+-T-Zellen mit immunmodulierender Fähigkeit, wie z. B. T-Helfer-Typ - 2-Zellen oder die Gruppe der CD25+ regulatorischen T-Zellen bei Patienten mit rheumatoider Arthritis geschwächt ist. Dieser Funktionsverlust von Untergruppen von CD4+-T-Zellen mit regulatorischer Funktion stellt einen wichtigen pathogenetischen Mechanismus der Erkrankung dar, da er vermutlich den Zusammenbruch der peripheren Toleranz zu Beginn der Autoimmunreaktion und damit die Entwicklung und Chronifizierung der autoantigenspezifischen T-Zell-Aktivierung ermöglicht.

Abstract

T cells, in particular CD4+ T cells, are responsible for many aspects of rheumatic inflammation. It has been demonstrated that CD4+ T cells from patients with rheumatoid arthritis express a variety of abnormalities, both in the inflamed synovium as well as in the peripheral circulation, that identify them as proinflammatory effector cells. Recent evidence, however, suggests that the role of CD4+ T cells in the pathogenesis of rheumatic inflammation is not restricted to that of activated effector cells initiating and perpetuating chronic autoimmune inflammation. Recent data suggest that the function of CD4+ T cells with an immunomodulatory capability, such as T helper type 2 cells or the population of CD25+ regulatory T cells, is impaired in patients with rheumatoid arthritis. This functional abnormality of subgroups of CD4+ T cells with a regulatory capacity presents an important mechanism in the pathogenesis of the disease as it might allow the breakdown of peripheral tolerance at the initiation of the autoimmune reaction, promoting the development and perpetuation of autoantigen-specific T cell activation.

Literatur

  • 1 Germain R N. T-cell development and the CD4 - CD8 lineage decision.  Nat Rev Immunol. 2002;  2 309
  • 2 Jacobs M R, Haynes B F. Increase in TCR gamma delta T lymphocytes in synovia from rheumatoid arthritis patients with active synovitis.  J Clin Immunol. 1992;  12 130
  • 3 Berner B, Akca D, Jung T. et al . Analysis of Th1 and Th2 cytokines expressing CD4+ and CD8+ T cells in rheumatoid arthritis by flow cytometry.  J Rheumatol. 2000;  27 1128
  • 4 Ehinger M, Vestberg M, Johansson A C. et al . Influence of CD4 or CD8 deficiency on collagen-induced arthritis.  Immunology. 2001;  103 291
  • 5 Van Boxel J A, Paget S A. Predominantly T-cell infiltrate in rheumatoid synovial membranes.  N Engl J Med. 1975;  293 517
  • 6 Schulze-Koops H, Davis L S, Haverty T P. et al . Reduction of Th1 cell activity in the peripheral circulation of patients with rheumatoid arthritis after treatment with a non-depleting humanized monoclonal antibody to CD4.  J Rheumatol. 1998;  25 2065
  • 7 Panayi G S, Tugwell P. The use of cyclosporin A in rheumatoid arthritis: conclusions of an international review.  Br J Rheumatol. 1994;  33 967
  • 8 Paulus H E, Machleder H I, Levine S. et al . Lymphocyte involvement in rheumatoid arthritis. Studies during thoracic duct drainage.  Arthritis Rheum. 1977;  20 1249
  • 9 Strober S, Tanay A, Field E. et al . Efficacy of total lymphoid irradiation in intractable rheumatoid arthritis. A double-blind, randomized trial.  Ann Intern Med. 1985;  102 441
  • 10 Schulze-Koops H, Lipsky P E. Anti-CD4 monoclonal antibody therapy in human autoimmune diseases.  Curr Dir Autoimmun. 2000;  2 24
  • 11 Banerjee S, Webber C, Poole A R. The induction of arthritis in mice by the cartilage proteoglycan aggrecan: roles of CD4+ and CD8+ T cells.  Cell Immunol. 1992;  144 347
  • 12 Breedveld F C, Dynesius-Trentham R, de Sousa M. et al . Collagen arthritis in the rat is initiated by CD4+ T cells and can be amplified by iron.  Cell Immunol. 1989;  121 1
  • 13 Calin A, Elswood J, Klouda P T. Destructive arthritis, rheumatoid factor, and HLA-DR4. Susceptibility versus severity, a case-control study.  Arthritis Rheum. 1989;  32 1221
  • 14 Winchester R. The molecular basis of susceptibility to rheumatoid arthritis.  Adv Immunol. 1994;  56 389
  • 15 Mosmann T R, Schumacher J H, Street N F. et al . Diversity of cytokine synthesis and function of mouse CD4+ T cells.  Immunol Rev. 1991;  123 209
  • 16 Sanders M E, Makgoba M W, Shaw S. Human naive and memory T cells: reinterpretation of helper-inducer and suppressor-inducer subsets.  Immunol Today. 1988;  9 195
  • 17 Seder R A, Paul W E. Acquisition of lymphokine-producing phenotype by CD4+ T cells.  Annu Rev Immunol. 1994;  12 635
  • 18 Mosmann T R, Cherwinski H, Bond M W. et al . Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins.  J Immunol. 1986;  136 2348
  • 19 Del Prete GF, De Carli M, Ricci M. et al . Helper activity for immunoglobulin synthesis of T helper type 1 (Th1) and Th2 human T cell clones: the help of Th1 clones is limited by their cytolytic capacity.  J Exp Med. 1991;  174 809
  • 20 Saoudi A, Kuhn J, Huygen K. et al . TH2 activated cells prevent experimental autoimmune uveoretinitis, a TH1-dependent autoimmune disease.  Eur J Immunol. 1993;  23 3096
  • 21 Van der Veen R C, Stohlman S A. Encephalitogenic Th1 cells are inhibited by Th2 cells with related peptide specificity: relative roles of interleukin (IL)-4 and IL-10.  J Neuroimmunol. 1993;  48 213
  • 22 Liblau R S, Singer S M, McDevitt H O. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases.  Immunol Today. 1995;  16 34
  • 23 Abbas A K, Murphy K M, Sher A. Functional diversity of helper T lymphocytes.  Nature. 1996;  383 787
  • 24 Fowell D, Mason D. Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential.  J Exp Med. 1993;  177 627
  • 25 Khoury S J, Hancock W W, Weiner H L. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain.  J Exp Med. 1992;  176 1355
  • 26 Kennedy M K, Torrance D S, Picha K S. et al . Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery.  J Immunol. 1992;  149 2496
  • 27 Skapenko A, Leipe J, Lipsky P E. et al . 2005. The role of the T cell in autoimmune inflammation.  Arthritis Res Ther 7. 2005;  Suppl 2 S4
  • 28 Miltenburg A M, van Laar J M, de Kuiper R. et al . T cells cloned from human rheumatoid synovial membrane functionally represent the Th1 subset.  Scand J Immunol. 1992;  35 603
  • 29 Quayle A J, Chomarat P, Miossec P. et al . Rheumatoid inflammatory T-cell clones express mostly Th1 but also Th2 and mixed (Th0) cytokine patterns.  Scand J Immunol. 1993;  38 75
  • 30 Kusaba M, Honda J, Fukuda T. et al . Analysis of type 1 and type 2 T cells in synovial fluid and peripheral blood of patients with rheumatoid arthritis.  J Rheumatol. 1998;  25 1466
  • 31 Canete J D, Martinez S E, Farres J. et al . Differential Th1/Th2 cytokine patterns in chronic arthritis: interferon gamma is highly expressed in synovium of rheumatoid arthritis compared with seronegative spondyloarthropathies.  Ann Rheum Dis. 2000;  59 263
  • 32 Davis L S, Cush J J, Schulze-Koops H. et al . Rheumatoid synovial CD4+ T cells exhibit a reduced capacity to differentiate into IL-4-producing T-helper-2 effector cells.  Arthritis Res. 2001;  3 54
  • 33 Schulze-Koops H, Lipsky P E, Kavanaugh A F. et al . Elevated Th1- or Th0-like cytokine mRNA in peripheral circulation of patients with rheumatoid arthritis: Modulation by treatment with anti-ICAM-1 correlates with clinical benefit.  J Immunol. 1995;  155 5029
  • 34 Kanik K S, Hagiwara E, Yarboro C H. et al . Distinct patterns of cytokine secretion characterize new onset synovitis versus chronic rheumatoid arthritis.  J Rheumatol. 1998;  25 16
  • 35 Groux H, O’Garra A, Bigler M. et al . A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis.  Nature. 1997;  389 737
  • 36 Hsieh C S, Macatonia S E, Tripp C S. et al . Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages.  Science. 1993;  260 547
  • 37 Ghoreschi K, Thomas P, Breit S. et al . Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease.  Nat Med. 2003;  9 40
  • 38 Skapenko A, Wendler J, Lipsky PE. et al . Altered memory T cell differentiation in patients with early rheumatoid arthritis.  J Immunol. 1999;  163 491
  • 39 Sakaguchi S, Sakaguchi N, Asano M. et al . Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.  J Immunol. 1995;  155 1151
  • 40 McHugh R S, Shevach E M. Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease.  J Immunol. 2002;  168 5979
  • 41 Mottet C, Uhlig H H, Powrie F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells.  J Immunol. 2003;  170 3939
  • 42 Taams L S, Smith J, Rustin M H. et al . Human anergic/suppressive CD4(+)CD25(+) T cells: a highly differentiated and apoptosis-prone population.  Eur J Immunol. 2001;  31 1122
  • 43 Jonuleit H, Schmitt E, Stassen M. et al . Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood.  J Exp Med. 2001;  193 1285
  • 44 Levings M K, Sangregorio R, Roncarolo M G. Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function.  J Exp Med. 2001;  193 1295
  • 45 Dieckmann D, Plottner H, Berchtold S. et al . Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood.  J Exp Med. 2001;  193 1303
  • 46 Baecher-Allan C, Brown J A, Freeman G J. et al . D4 +CD25high regulatory cells in human peripheral blood.  J Immunol. 2001;  167 1245
  • 47 Stephens L A, Mottet C, Mason D. et al . 2001. Human CD4(+)CD25(+) thymocytes and peripheral T cells have immune suppressive activity in vitro.  Eur J Immunol. 2001;  31 1247
  • 48 Annunziato F, Cosmi L, Liotta F. et al . Phenotype, localization, and mechanism of suppression of CD4(+)CD25(+) human thymocytes.  J Exp Med. 2002;  196 379
  • 49 Leipe J, Skapenko A, Lipsky P E. et al . Regulatory T cells in rheumatoid arthritis.  Arthritis Res Ther. 2005;  7 93
  • 50 van Amelsfort J M, Jacobs K M, Bijlsma J W. et al . CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid.  Arthritis Rheum. 2004;  50 2775
  • 51 Cao D, Malmstrom V, Baecher-Allan C. et al . Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis.  Eur J Immunol. 2003;  33 215

PD Dr. med. Hendrik Schulze-Koops

Klinische Forschergruppe III, Nikolaus-Fiebiger-Zentrum für Molekulare Medizin

Glückstraße 6

91054 Erlangen

Phone: ++49/91 31/8 53 37 95

Fax: ++49/91 31/8 53 47 70

Email: Schulze-Koops@med3.imed.uni-erlangen.de