Zusammenfassung
Ziel: Die gestörte Hirnperfusion bei Patienten mit akutem Hirninfarkt kann mit der sonographischen
Perfusionsbildgebung nach Ultraschallkontrastmittelbolusinjektion dargestellt werden.
Wir untersuchten die diagnostische Wertigkeit von fünf verschiedenen parametrischen
Darstellungen der Hirnperfusion im Hinblick auf die Infarktentwicklung im Kontroll-CCT.
Material und Methoden: Perfusion-harmonic-imaging-Untersuchungen nach SonoVue® Bolus-Injektion wurden bei
22 Patienten mit akutem vorderen Hirninfarkt in der dienzephalen Ebene durchgeführt
und mit korrespondierenden CCT-Schichten nach Infarktdemarkation verglichen. Es wurden
jeweils fünf verschiedene Parameterbilder pixelweise errechnet: pixelwise peak intensity
(PPI), area under the curve (AUC), positive gradient (PG), time to peak (TTP) und
ein Dreifaktorbild mithilfe der Software factor analysis of medical image sequences
(FAMIS). Ergebnisse: Die Sensitivitäten und positiven prädiktiven Werte (PPV) der sonographischen Perfusionsbildgebung
waren wie folgt: PPI (100 %/95 %), AUC (100 %/90 %), FAMIS (89 %/89 %), PG (84 %/94
%) und TTP (47 %/100 %). Die Flächen der fünf parametrischen Darstellungen korrelierten
jeweils signifikant mit der jeweiligen Infarktfläche des Verlaufs-CCT. Bilder, berechnet
nach dem FAMIS-Algorithmus, und PPI-Bilder hatten die höchsten Spearman-rank-Korrelationskoeffizienten
(beide r = 0,76, p < 0,001), die übrigen Bilder korrelierten wie folgt: PG: r = 0,62
(p = 0.003), AUC: r = 0,53 (p = 0.014), TTP: r = 0,50 (p = 0.021). Schlussfolgerung: Parameterbilder der sonographischen Hirnperfusion prädizieren die Infarktentwicklung
bei akuten Hirninfarkten. Darstellung der Kontraststärke (Intensität) und die FAMIS-Analyse
haben hohe Sensitivitäten, die TTP-Darstellung hat eine hohe Spezifität und ein hohen
PPV.
Abstract
Purpose: Cerebral perfusion deficits in acute ischemic stroke can be detected by means of
transcranial harmonic imaging after ultrasound contrast agent bolus injection. We
evaluated five different parameters of the bolus kinetics as parametric images and
correlated areas of disturbed perfusion with the area of definite infarction. Materials and Methods: Perfusion harmonic imaging after SonoVue® bolus injection (BHI) was used to investigate
22 patients suffering from acute internal carotid artery infarction. For each subject,
we calculated five different images based on the following parameters from the time-intensity
curve in each pixel: pixelwise peak intensity (PPI), area under the curve (AUC), positive
gradient (PG), time to peak (TTP), and a three factor image from the factor analysis
of medical image sequences (FAMIS). The findings in the diencephalic imaging plane
were compared with the definite area of infarction, as diagnosed by cranial CT. Results: In predicting the definite area of infarction in follow-up CT, we found the following
sensitivities and positive predictive values (PPV): PPI (100 %/95 %), AUC (100 %/90
%), FAMIS (89 %/89 %), PG (84 %/94 %) and TTP (47 %/100 %). The areas of disturbed
perfusion in all five types of parametric images correlated significantly with the
area of infarction in CT. Images from the FAMIS algorithm and PPI images showed the
highest Spearman rank correlation with the area of definite infarction as displayed
in CT (both r = 0.76, p < 0.001). Images from the other parameters correlated as follows:
PG: r = 0.62 (p = 0.003), AUC: r = 0.53 (p = 0.014), TTP: r = 0.50 (p = 0.021). Conclusion: BHI can detect disturbed perfusion in acute hemispheric stroke. In their ability
to predict the development of an infarction, intensity-based parameters and FAMIS
were determined to have a high sensitivity, and TTP was found to have a high PPV and
specificity.
Key words
contrast media - stroke - ultrasonography - perfusion - transcranial
References
1
Postert T, Federlein J, Weber S. et al .
Second harmonic imaging in acute middle cerebral artery infarction - preliminary results.
Stroke.
1999;
30
1702-1706
2
Federlein J, Postert T, Meves S. et al .
Ultrasonic evaluation of pathological brain perfusion in acute stroke using second
harmonic imaging.
J Neurol Neurosurg Psychiatry.
2000;
69
616-622
3
Meairs S, Daffertshofer M, Neff W. et al .
Pulse-inversion contrast harmonic imaging: ultrasonographic assessment of cerebral
perfusion.
Lancet.
2000;
355
550-551
4
Seidel G, Albers T, Meyer K. et al .
Perfusion harmonic imaging in acute middle cerebral artery infarction.
Ultrasound Med Biol.
2003;
29
1245-1251
5
Eyding J, Krogias C, Wilkening W. et al .
Detection of cerebral perfusion abnormalities in acute stroke using phase inversion
harmonic imaging (PIHI): preliminary results.
J Neurol Neurosurg Psychiatry.
2004;
75
926-929
6
Meyer K, Wiesmann M, Albers T. et al .
Harmonic imaging in acute stroke: detection of a cerebral perfusion deficit with ultrasound
and perfusion MRI.
J Neuroimaging.
2003;
13
166-168
7
Wiesmann M, Meyer K, Albers T. et al .
Parametric perfusion imaging with contrast-enhanced ultrasound in acute ischemic stroke.
Stroke.
2004;
35
508-513
8
Seidel G, Meyer K, Berdien G. et al .
Ultrasound perfusion imaging in acute middle cerebral artery infarction predicts outcome.
Stroke.
2004;
35
1107-1111
9
Büttner T, Uffmann M, Gunes N. et al .
Early CCT signs of supratentorial brain infarction: clinico-radiological correlations.
Acta Neurol Scand.
1997;
96
317-323
10
Seidel G, Kaps M, Gerriets T.
Potentials and limitations of transcranial color-coded sonography in stroke patients.
Stroke.
1995;
26
2061-2066
11
Demchuk A M, Burgin W S, Christou I. et al .
Thrombolysis in brain ischemia (TIBI) transcranial Doppler flow grades predict clinical
severity, early recovery, and mortality in patients treated with intravenous tissue
plasminogen activator.
Stroke.
2001;
32
89-93
12
Frouin F, Bazin J, Di Paola M. et al .
FAMIS: A software package for functional feature extraction from biomedical multidimensional
images.
Comput Med Imaging Graph.
1992;
16
81-91
13
Delzescaux T, Frouin F, Cesare A de. et al .
Using an adaptive semi-automated self-evaluated registration technique to analyze
MRI data for myocardial perfusion assessment.
J Magn Reson Imaging.
2003;
18
681-690
14
Meves S H, Wilkening W, Thies T. et al .
Comparison between echo contrast agent-specific imaging modes and perfusion-weighted
magnetic resonance imaging for the assessment of brain perfusion.
Stroke.
2002;
33
2433-2437
15
Bartels E, Bittermann H J.
Kontrastverstärkte transkranielle sonographische Darstellung der zerebralen Perfusion
bei Schlaganfällen nach dekompressiver Kraniotomie.
Ultraschall in Med.
2004;
25
206-213
16
Harrer J, Klötzsch C.
Second Harmonic Imaging of the Human Brain. The Practicability of Coronal Insonation
Planes and Alternative Perfusion Parameters.
Stroke.
2002;
33
1530-1535
Prof. Dr. Günter Seidel
Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck
Ratzeburger Allee 160
23538 Lübeck
Deutschland
Phone: ++49/4 51/5 00 33 34
Fax: ++49/4 51/5 00 24 89
Email: guenter.seidel@neuro.uni-luebeck.de