RSS-Feed abonnieren
DOI: 10.1055/s-2006-927248
© Georg Thieme Verlag KG Stuttgart · New York
Partikuläre Belastungssituation in Innenräumen, unter besonderer Berücksichtigung von Wohninnenräumen, Gemeinschaftseinrichtungen und Gaststätten
Particulate Matter in Indoor Environments - Exposure Situation in Residences, Schools, Pubs, and Related Recreational SpacesPublikationsverlauf
Publikationsdatum:
02. Januar 2007 (online)
Zusammenfassung
Verschiedene epidemiologische Studien haben in den letzten Jahren den Zusammenhang zwischen der Außenluftbelastung mit Schadstoffen und gesundheitlichen Beschwerden/Erkrankungen beleuchtet. Der Fokus hat sich dabei in Richtung auf die partikulären Luftinhaltsstoffe und hier insbesondere auf die feinen und ultrafeinen Partikel verschoben. Während Partikelmessungen in der Außenluft häufig durchgeführt werden, gibt es, auch aufgrund ihrer Komplexität, deutlich weniger Daten zur Belastung von Innenräumen. Insgesamt sind die Feinstaubgehalte in Innenräumen stark von verschiedenen Einflussfaktoren abhängig, z. B. von der Art der Quelle, den baulichen Bedingungen der Gebäude/Räume, den Aktivitäten der Raumnutzer und den Lüftungsbedingungen. Im Weiteren soll die Belastungssituation in Innenräumen zusammenfassend dargestellt werden. In verschiedenen europäischen Untersuchungen ergaben sich in Wohnungen mittlere PM2,5-Gehalte von 10 - 87 µg/m3. In Raucherwohnungen zeigt sich eine höhere Grundbelastung als in Nichtraucherwohnungen, die während des Rauchvorgangs nochmals deutlich höher liegt (teilweise Konzentrationen von einigen hundert µg/m3). Eine besondere Belastungssituation scheint in Gemeinschaftsräumen (z. B. Schulen) zu bestehen. Die Ursachen hierfür liegen im Zusammenwirken verschiedener Faktoren, vor allen Dingen den schlechten Lüftungsbedingungen, der unzureichenden Reinigung der Räume und der oft hohen Anzahl und körperlichen Aktivität der Schüler, die zu beständigen Resuspensionsvorgängen von sedimentierten Partikeln führen. Außergewöhnlich hohe Feinstaubgehalte können in Gaststätten und vergleichbaren Einrichtungen beobachtet werden, die sich im Mittel bis zu einigen hundert µg/m3 bewegen können. Maßnahmen für einen gezielten Nichtraucherschutz scheinen in diesen Einrichtungen dringend erforderlich. Weitere Untersuchungen sind notwendig, um die Stäube in ihrer morphologischen und chemischen Zusammensetzung genauer zu charakterisieren und ihr biologisches/toxisches Potenzial im Vergleich zu Außenluftstäuben zu ermitteln.
Abstract
Numerous epidemiological studies have been carried out during the last decades which have demonstrated an association between the pollution of outside air with toxic substances and the occurrence of health-related effects. Against the background of these findings, particularly in recent years, the focus of research has clearly shifted towards particulate matter (PM), notable fine and ultrafine particles. While diverse measurements of PM in the outside air have been conducted, only few data on indoor air pollution are available. The concentration of PM in the indoor environment is highly variable in time and space due to various influencing factors like type of the source, building and room characteristics, the activities of users and the airing behaviour. In this article we aim to summarise and discuss the exposure situation regarding PM in indoor environments. In residences, European studies have found mean PM2.5 values between 10 and 87 µg/m3. Especially in smokers’ homes, a high background level was observed, reaching very high concentrations of some hundred µg/m3 when active smoking took place. There are some studies on air quality in schools and similar public places which show that exposure to particulate matter in these environments is high. The main causes of this situation appear to be an insufficient ventilation routine as well as the low frequency and quality of cleaning. In combination with the high number of pupils in relation to room area and volume and their sometimes high physical activity, this leads to a continued resuspension of particles from the room’s surfaces. A very high concentration of PM can be observed in those recreational places where smoking is not prohibited, such as discotheques, pubs and restaurants. Here, the mean PM values can reach some hundred µg/m3. Specific strategies are necessary to especially protect the health of non-smokers in such places. Further investigations are needed to characterise the composition of indoor particles and their toxicological properties compared to particles from outdoor origin.
Schlüsselwörter
Feinstaub - PM - Innenraum - Schulen - Gaststätten
Key words
particulate matter - PM - indoor - schools - pubs - restaurants
Literatur
- 1 WHO (World Health Organization). Meta-analysis of time-series studies and panel studies of particulate matter (PM) and ozone (O3). Report of a WHO task group. 2004; , http://www.euro.who.int/document/E82792.pdf
- 2 EPA (US-Environmental Protection Agency). Air quality criteria for particulate matter. EPA/600/P-99/002aF bis bF. Washington, DC, USA; 2004
- 3 Morawska L, Salthammer T. Fundamentals of indoor particles and settled dust. Morawska L, Salthammer T Indoor Environment. Airborne particles and settled dust Weinheim; Wiley-VCH Verlag 2003: 3-46
- 4 Nazaroff W W. Indoor particle dynamics. Indoor Air. 2004; 14 (Suppl 7) 175-183
- 5 Fromme H, Lahrz T, Hainsch A. et al . Elemental carbon and respirable particulate matter in the indoor air of apartments and nursery schools and outdoor air in Berlin (Germany). Indoor Air. 2005; 15 335-341
- 6 Link B, Gabrio T, Zöllner I. et al .Feinstaubbelastung und deren gesundheitliche Wirkungen bei Kindern. Bericht des Landesgesundheitsamtes Baden-Württemberg. Stuttgart; 2004
- 7 Deichsel H, Schierl R, Qorolli I. et al .Erfassung und Charakterisierung von Partikelkonzentrationen (PM10, PM2,5, Ultrafein) innerhalb und außerhalb von Wohnungen in unterschiedlich belasteten Gebieten und mit verschiedenen Innenraumquellen (PIA). Zweiter Zwischenbericht zum Forschungsvorhaben. München; 2005
- 8 Kreyling W G, Tuch T, Peters A. et al . Diverging long-term trends in ambient urban particle mass and number concentrations associated with emission changes caused by the German unification. Atmos Environ. 2003; 37 3841-3848
- 9 Pitz M, Cyrys J, Karg E. et al . Variability of apparent particle density of an urban aerosol. Environ Sci Technol. 2003; 37 4336-4342
- 10 Morawska L, He C, Hitchins J. et al . Characteristics of particle number and mass concentrations in residential houses in Brisbane, Australia. Atmos Environ. 2003; 37 4195-4203
- 11 McLaughlin J, Hogg C, Guo L Y. Ultrafine and coarse mode aerosol measurements in selected dwellings in Ireland. Peking Proceedings Indoor Air. 2005; 698-701
- 12 Cyrys J, Pitz M, Bischof W. et al . Relationship between indoor and outdoor levels of fine particle mass, particle number concentrations and black smoke under different ventilation conditions. J Expo Anal Environ Epidemiol. 2004; 14 275-284
- 13 Kopperud R J, Ferro A R, Hildemann L M. Outdoor versus indoor contributions to indoor particulate matter (PM) determined by mass balance methods. J Air & Waste Manage Assoc. 2004; 54 1188-1196
- 14 Allen R, Wallace L, Larson T. et al . Estimated hourly personal exposures to ambient and nonambient particulate matter among sensitive populations in Seattle, Washington. J Air Waste Manag Assoc. 2004; 54 1197-1211
- 15 Burke J M, Zufall M J, Özkaynak H. A population exposure model for particulate matter: case study results for PM2,5 in Philadelphia, PA. J Expo Anal Environ Epidemiol. 2001; 11 470-489
- 16 Dennekamp M, Howarth S, Dick C AJ. et al . Ultrafine particles and nitrogen oxides generated by gas and electric cooking. Occup Environ Med. 2001; 58 511-516
- 17 He C, Morawska L, Hitchins J. et al . Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos Environ. 2004; 38 3405-3415
- 18 Afshari A, Matson U, Ekberg L E. Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber. Indoor Air. 2005; 15 141-150
- 19 Hussein T, Glytsos T, Ondrácek J. et al . Particle size characterization and emission rates during indoor activities in a home. Atmos Environ. 2006; 40 4285-4307
- 20 Özkaynak H, Xue J, Weker R. et al .The Particle TEAM (PTEAM) Study: analysis of the data. Final report. Vol. III. US-Environmental Protection Agency 1995
- 21 Lebret E, Boleij J, Brunekreef B. Environmental tabacco smoke in Dutch homes. Indoor Air ‘90. Proceedings of the 5th International Conference on Indoor Air Quality and Climate. 1990; 2 263-268
- 22 Klepeis N E, Ott W R, Repace J L. The effect of cigar smoking on indoor levels of carbon monoxide and particles. J Expo Anal Environ Epidemiol. 1999; 9 622-635
- 23 Xu M, Nematollahi M, Sextro R G. et al . Deposition of tobacco smoke particles in a low ventilation room. Aerosol Sci Technol. 1994; 20 194-206
- 24 Bake D, Moriske H J, Süßenbach B. Feine und ultrafeine Partikel im Innenraum. Gefahrstoffe -Reinhaltung der Luft. 2004; 64 84-87
- 25 Long C M, Suh H H, Koutrakis P. Characterization of indoor particle sources using continuous mass and size monitors. J Air & Waste Manage Assoc. 2000; 50 1236-1250
- 26 Ferro A, Kopperud R J, Hildemann L M. Elevated personal exposure to particulate matter from human activities in a residence. J Expo Anal Environ Epidem. 2004; 14 S34-S40
- 27 Fine P M, Cass G R, Simoneit B RT. Characterization of fine particle emissions from burning church candles. Environ Sci Technol. 1999; 33 2352-2362
- 28 Keeler G J, Dvonch T, Yip F Y. et al . Assessment of personal and community-level exposure to particulate matter among children with asthma in Detroit, Michigan, as part of Community Action Against Asthma (CAAA). Environ Health Perspect. 2002; 110 (Suppl 2) 173-181
- 29 Ligman B, Casey M, Braganza E. et al . Airborne Particulate matter within school environments in the United States. Proceedings of Indoor Air. 1999; 255-261
- 30 Lee S C, Chang M. Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere. 2000; 41 109-113
- 31 Lahrz T, Piloty M, Oddoy A. et al .Gesundheitlich bedenkliche Substanzen in öffentlichen Einrichtungen in Berlin. Untersuchungen zur Innenraumluftqualität in Berliner Schulen. Bericht des Instituts für Lebensmittel, Arzneimittel und Tierseuchen, Fachbereich Umwelt- und Gesundheitsschutz. Berlin; 2003
- 32 Fromme H, Dietrich S, Twardella D. et al . Particulate matter in the indoor air of classrooms - exploratory results from Munich and surrounding area. Atmos Environ. 2006; doi: 10.1016/j.atmosenv.2006.08.053;
- 33 Lahrz T, Piloty M, Pfeiler P. et al .Gesundheitlich bedenkliche Substanzen in öffentlichen Einrichtungen in Berlin. Abwehr gesundheitlicher Beeinträchtigungen durch Luftschadstoffe in Berliner Schulen. Messprogramm 2003. Bericht des Instituts für Lebensmittel, Arzneimittel und Tierseuchen, Fachbereich Umwelt- und Gesundheitsschutz. Berlin; 2004
- 34 Heudorf U. Innenraumklima in Schulen. Bericht für das Dezernat Bildung, Umwelt und Frauen. Stadtschulamt Frankfurt 2006
- 35 Twardella D, Dietrich W C, Dietrich S. et al . Evaluation of the impact of airing and cleaning methods on particulate matter in classrooms. Sci Total Environ. 2006; (submitted)
- 36 Bohanon H R, Piadé J J, Schorp M K. et al . An international survey of indoor air quality, ventilation, and smoking activity in restaurants: a pilot study. J Expo Anal Environ Epidem. 2003; 13 378-392
- 37 Edwards R, Hasselholdt C P, Hargreaves K. et al . Levels of second hand smoke in pubs and bars by deprivation and food-serving status: a cross-sectional study from North West England. BMC Public Health. 2006; 6 42 DOI: 10.1186/1471 - 2458 -6-42
- 38 Bolte G, Heitmann D, Kiranoglu M. et al . Environmental tobacco smoke exposure in German discotheques: measurement of particulate matter, volatile organic compounds and polycyclic aromatic hydrocarbons. ISEE (International Society for Environmental Epidemiology) and ISEA (International Society of Exposure Analysis): International Conference on Environmental Epidemiology & Exposure. Paris. 2.-6.9.2006;
- 39 Cains T, Cannata S, Poulos R. et al . Designated „no smoking” areas provide from partial to no protection from environmental tobacco smoke. Tobacco Control. 2004; 13 17-22
- 40 Maskarinec M P, Jenkins R A, Counts R W. et al . Determination of exposure to environmental tobacco smoke in restaurant and tavern workers in one US city. J Expo Anal Environ Epidem. 2000; 10 36-49
- 41 Lambert W E, Samet J M, Spengler J D. Environmental tobacco smoke concentrations in no-smoking and smoking sections of restaurants. Am J Public Health. 1993; 83 1339-1341
- 42 Cenko C, Pisaniello D, Esterman A. A study of environmental tobacco smoke in South Australian pubs, clubs and cafes. Int J Environ Health Res. 2004; 14 3-11
- 43 Jenkins R A, Finn D, Tomkins B A. et al . Environmental tobacco smoke in the nonsmoking section of a restaurant: a case study. Regul Toxicol Pharmacol. 2001; 34 213-220
- 44 Repace J. Respirable particles and carcinogens in the air of Delaware hospitality venues before and after a smoking ban. J Occup Environ Med. 2004; 46 887-905
- 45 Ott W, Switzer P, Robinson J. Particle concentrations inside a tavern before and after prohibition of smoking: evaluating the performance of an indoor air quality model. J Air & Waste Manage Assoc. 1996; 46 1120-1134
- 46 Travers M J, Cummings K M, Hyland A. et al . Indoor air quality in hospitality venues before and after implementation of a Clean Indoor Air Law - Western New York, 2003. MMWR. 2004; 1038-1041
- 47 Waring M S, Siegel J A. An evaluation of the indoor air quality in bars before and after a smoking ban in Austin, Texas. J Expo Sci Environ Epidem advance online publication. 28.6.2006; DOI: 10.1038/sj.jes.7500513
- 48 Mulcahy M, Byrne M A, Ruprecht A. How does the Irish smoking ban measure up? A before and after study of particle concentrations in Irish pubs. Peking Proceedings Indoor Air. 2005; 1659-1662
- 49 Rodes C, Sheldon L, Whitaker D. et al .Measuring concentrations of selected air pollutants inside California vehicles: Final Report prepared for the California State Air Resources Board. Sacramento; 1999
- 50 Fromme H, Oddoy A, Lahrz T. et al . Polycyclic aromatic hydrocarbons (PAH) and diesel engine emission (elemental carbon) inside a car and a subway train. Sci Total Environ. 1998; 217 165-173
- 51 Eiguren-Fernandez A, Miguel A H, Zhu Y F. et al . In-cabin passenger exposure to ultrafine and nano-particles during daily commute in Los Angeles roads and freeways: evaluation of a HEPA filtration system. Peking Proceedings Indoor Air. 2005; 1763-1767
- 52 Wargo J, Brown D, Cullen M. et al .Children’s exposure to diesel exhaust on school buses. Report of the Environment & Human Health Inc. North Haven; 2002
- 53 Sabin L D, Behrentz E, Winer A M. et al . Characterizing the range of children’s air pollutant exposure during school bus commutes. J Expo Anal Environ Epidem. 2004; 1-11
- 54 Sohn J R, Choi D W, Kim Y S. et al . A survey of indoor air quality within public transport vehicles operating in Seoul. Peking Proceedings Indoor Air. 2005; 802-805
- 55 Praml C, Schierl R. Dust exposure in Munich public transportation: a comprehensive 4-year survey in buses and trams. Int Arch Occup Environ Health. 2000; 73 209-214
- 56 Hurley F, Cherrie J, Donaldson K. et al .Assessment of health effects of long-term occupational exposure to tunnel dust in the London underground. Universitiy of Aberdeen. Research report TM/02/04. 2004
- 57 Li T T, Bai Y H, Liu Z R. et al . Air quality in passenger cars of the ground railway transit system in Beijing, China. Sci Total Environ. 2006; DOI: 10.1016/j.scitotenv.2006.01.007
- 58 Monn C, Fuchs A, Hogger D. et al . Particulate matter less than 10 microns (PM10) and fine particles less than 2.5 microns (PM2.5): relationships between indoor, outdoor and personal concentrations. Sci Total Environ. 1997; 208 15-21
- 59 Janssen N AH, Lanki T, Hoek G. et al . Association between ambient, personal, and indoor exposure to fine particulate matter constituents in Dutch and Finnish panels of cardiovascular patients. Occup Environ Med. 2005; 62 868-877
- 60 Lai H K, Kendall M, Ferrier H. et al . Personal exposures and microenvironment concentrations of PM2.5, VOC, NO2 and CO in Oxford, UK. Atmos Environ. 2004; 38 6399-6410
- 61 Simoni M, Scognamiglio A, Carrozzi L. et al . Indoor exposure and acute respiratory effects in two general population samples from rural and an urban area in Italy. J Expo Anal Environ Epidem. 2004; 14 S144-S152
- 62 Hänninen O O, Lebret E, Ilacqua V. et al . Infiltration of ambient PM2.5 and levels of indoor generated non-ETS PM2.5 in residences of four European cities. Atmos Environ. 2004; 38 6411-6423
- 63 Sørensen M, Loft S, Andersen H V. et al . Personal exposure to PM2.5, black smoke and NO2 in Copenhagen: relationship to bedroom and outdoor concentrations covering seasonal variation. J Expo Anal Environ Epidemiol. 2005; 15 413-422
- 64 Rojas-Bracho L, Suh H H, Koutrakis P. Relationships among personal, indoor, and outdoor fine and coarse particle concentrations for individuals with COPD. J Expo Anal Environ Epidem. 2000; 10 294-306
- 65 Wallace L A, Mitchell H, O’Connor G T. et al . Particle concentrations in inner-city homes of children with asthma: the effect of smoking, cooking, and outdoor pollution. Environ Health Perspect. 2003; 111 1265-1272
- 66 Sawant A A, Na K, Zhu X. et al . Characterization of PM2.5 and selected gas-phase compounds at multiple indoor and outdoor sites in Mira Loma, California. Atmos Environ. 2004; 38 6269-6278
- 67 Meng Q J, Turpin B J, Korn L. et al . Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: Analyses of RIOPA data. J Expo Anal Environ Epidemiol. 2005; 15 17-28
- 68 Breysse P N, Buckley T J, Williams D A. et al . Indoor exposures to air pollutants and allergens in the homes of asthmatic children in inner-city Baltimore. Environ Res. 2005; 98 167-176
- 69 Lee H S, Kang B W, Cheong J P. et al . Relationships between indoor and outdoor air quality during the summer season in Korea. Atmos Environ. 1997; 31 1689-1693
- 70 Chao C Y, Wong K K. Residential indoor PM10 and PM2.5 in Hong Kong and the elemental composition. Atmos Environ. 2002; 36 265-277
- 71 Li S C, Lin C H. Carbon profile of residential indoor PM1 and PM2.5 in the subtropical region. Atmos Environ. 2003; 37 881-888
- 72 Ho K F, Cao J J, Harrison R M. et al . Indoor/outdoor relationships of organic carbon (OC) and elemental carbon (EC) in PM2.5 in roadside environment of Hong Kong. Atmos Environ. 2004; 38 6327-6335
- 73 Künzli N, Mazzoletti P, Adam M. et al . Smoke-free café in an unregulated European city: highly welcome and economically successful. Tobacco Control. 2003; 12 282-288
- 74 Brauer M, Hirtle R, Lang B. et al . Assessment of indoor fine aerosol contributions from environmental tobacco smoke and cooking with a portable nephelometer. J Expo Anal Environ Epidem. 2000; 10 136-144
- 75 Lee S C, Chan L Y, Chiu M Y. Indoor and outdoor air quality investigation at 14 public places in Hong Kong. Environ Int. 1999; 25 443-450
- 76 Janssen N AH, Hoek G, Harssema H. et al . Childhood exposure to PM10: relation between personal, classroom, and outdoor concentrations. Occup Environ Med. 1997; 54 888-894
- 77 Roorda-Knape M C, Janssen N AH, De Hartok J J. et al . Air pollution from traffic in city districts near major motorways. Atmos Environ. 1998; 32 1921-1930
- 78 Janssen N AH, Vliet P HN, Aaarts F van. et al . Assessment of exposure to traffic related air pollution of children attending schools near motorways. Atmos Environ. 2001; 35 3875-3884
- 79 LGL (Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit). PAMINA (particulate matter in indoor and ambient environments). Gemeinsames Projekt des Zentrums Allergie und Umwelt der TU München, des Institutes und der Poliklinik für Arbeits- und Umweltmedizin der Ludwig-Maximilians-Universität München und des LGL, Sachgebiet Umweltmedizin. München; 2006. http/www.lgl.bayern.de
Hermann Fromme
Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Sachgebiet Umweltmedizin
Veterinärstraße 2
85764 Oberschleißheim
eMail: hermann.fromme@lgl.bayern.de