RSS-Feed abonnieren
DOI: 10.1055/s-2006-927368
© Karl Demeter Verlag im Georg Thieme Verlag KG Stuttgart · New York
Lipid Metabolism in the Liver
Fettmetabolismus in der LeberPublikationsverlauf
Manuskript eingetroffen: 25.10.2006
Manuskript akzeptiert: 4.12.2006
Publikationsdatum:
19. Januar 2007 (online)

Zusammenfassung
Als zentrales Stoffwechselorgan nimmt die Leber eine Schlüsselrolle bei der Metabolisierung hochkalorischer, insbesondere fettreicher Ernährung ein. Im Zusammenspiel mit dem Gastrointestinaltrakt, dem Fett- und Muskelgewebe und anderen Organsystemen ist die Leber entscheidend am Fettmetabolismus beteiligt. Durch Aktivierung von Transkriptionsfaktoren wie dem „carbohydrate responsive element binding protein (ChREBP)”, „sterol response element binding protein-1c (SREBP-1c)” oder der „forkhead box 01 (Fox01)” wird die Fettsäuresynthese gesteigert. Die Translokation von freien Fettsäuren wird über bestimmte Fetttransportproteine wie dem „fatty acid transport proteins (FATP)”, der „fatty acid translocase (FAT/CD36)”, Caveolin-1 und dem „fatty acid binding protein (FABP)” vermittelt. Bei Störungen des Fettmetabolismus oder bei übermäßigem Fettangebot kommt es häufig zu Fettablagerungen in Form von Lipidtröpfchen innerhalb der Hepatozyten (nichtalkoholische Fettlebererkrankung; alkoholische Steatohepatitis, akute Schwangerschaftsfettleber, Hepatitis C). Neuere Daten belegen interessanterweise, dass die Fettablagerung in den Hepatozyten für die Leberregenration essenziell ist. Hieraus ergibt sich zunehmend die Erkenntnis, dass die Steatosis nicht ausschließlich das Resultat einer Stoffwechselstörung ist. Vielmehr scheinen bereits kleinste Veränderungen in der β-Oxidation, bei Transportproteinen und/oder den Signalwegen eine Steatosis zu bedingen und das Fortschreiten der o. a. Lebererkrankungen voranzutreiben. Durch neue experimentelle Erkenntnisse über die Mechanismen der Leberverfettung ergeben sich potenzielle neue therapeutische Optionen.
Abstract
As a key metabolic organ, the liver is central to the imbalance of high-caloric diets, and particularly dietary fat consumption, in the industrialized countries and their association with the increasing prevalence of morbid obesity. By interacting with the intestinal tract and adipose tissue, the liver plays a key role in various aspects of lipid metabolism. Increasing activation of transcription factors, such as carbohydrate responsive element binding protein (ChREBP), sterol response element binding protein-1c (SREBP-1c), or forkhead box 01 (Fox01), may contribute to fatty acid synthesis. Their translocation occurs via fatty acid transporters such as fatty acid transport proteins (FATP), fatty acid translocase (FAT/CD36), caveolin-1 and fatty acid binding protein (FABP). Eventually, the accumulation of fat in the form of lipid droplets within the hepatocytes results in hepatic steatosis which, indeed, is a hallmark of liver diseases such as non-alcoholic fatty liver disease, alcoholic fatty liver, acute fatty liver in pregnancy, and hepatitis C. In contrast, lipid accumulation within hepatocytes during liver regeneration is essential. It is thus now becoming clear that steatosis is not only a mere consequence of metabolic imbalance, but that it is also a result of discrete alterations in the β-oxidation, transport mechanisms, and signaling pathways involved in the synthesis, systemic traffic modalities, and cellular effects of fatty acids. Such a novel insight offers potential options for improved treatment.
Schlüsselwörter
fettreiche Ernährung - Fetttransportproteine - freie Fettsäure - NAFLD
Key words
dietary lipids - fatty acid transport proteins - free fatty acids - NAFLD
References
- 1
Angulo P.
Non-alcoholic fatty liver disease.
N Engl J Med.
2002;
346
1221-1231
MissingFormLabel
- 2
Kopelman P G.
Obesity as a medical problem.
Nature.
2000;
404
635-643
MissingFormLabel
- 3
Bray G A, Nielsen S J, Popkin B M.
Consumption of high-fructose corn syrup in beverages may play a role in the epidemic
of obesity.
Am J Clin Nutr.
2004;
79
537-543
MissingFormLabel
- 4
Bray G A.
How do we get fat? An epidemiologic and metabolic approach.
Clin Dermatol.
2004;
22
281-288
MissingFormLabel
- 5
Clarke S D.
Non-alcoholic steatosis and steatohepatitis. I. Molecular mechanism for polyunsaturated
fatty acid regulation of gene transcription.
Am J Physiol Gastrointest Liver Physiol.
2001;
281
G865-G869
MissingFormLabel
- 6
Timlin M T, Barrows B R, Parks E J.
Increased dietary substrate delivery alters hepatic fatty acid recycling in healthy
men.
Diabetes.
2005;
54
2694-2701
MissingFormLabel
- 7
Reddy J K, Rao M S.
Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation.
Am J Physiol Gastrointest Liver Physiol.
2006;
290
G852-G858
MissingFormLabel
- 8
Bradbury M W, Berk P D.
Lipid metabolism in hepatic steatosis.
Clin Liver Dis.
2004;
8
639-671, xi
MissingFormLabel
- 9
Pohl J, Ring A, Ehehalt R. et al .
New concepts of cellular fatty acid uptake: role of fatty acid transport proteins
and of caveolae.
Proc Nutr Soc.
2004;
63
259-262
MissingFormLabel
- 10
Merkel M, Eckel R H, Goldberg I J.
Lipoprotein lipase: genetics, lipid uptake, and regulation.
J Lipid Res.
2002;
43
1997-2006
MissingFormLabel
- 11
Heeren J, Niemeier A, Merkel M. et al .
Endothelial-derived lipoprotein lipase is bound to postprandial triglyceride-rich
lipoproteins and mediates their hepatic clearance in vivo.
J Mol Med.
2002;
80
576-584
MissingFormLabel
- 12
Pohl J, Ring A, Hermann T. et al .
Role of FATP in parenchymal cell fatty acid uptake.
Biochim Biophys Acta.
2004;
1686
1-6
MissingFormLabel
- 13
Hubbard B, Doege H, Punreddy S. et al .
Mice deleted for fatty acid transport protein 5 have defective bile acid conjugation
and are protected from obesity.
Gastroenterology.
2006;
130
1259-1269
MissingFormLabel
- 14
Begriche K, Igoudjil A, Pessayre D. et al .
Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent
it.
Mitochondrion.
2006;
6
1-28
MissingFormLabel
- 15
Ehehalt R, Fullekrug J, Pohl J. et al .
Translocation of long chain fatty acids across the plasma membrane - lipid rafts and
fatty acid transport proteins.
Mol Cell Biochem.
2006;
284
135-140
MissingFormLabel
- 16
Goldberg I J, Ginsberg H N.
Ins and outs modulating hepatic triglyceride and development of nonalcoholic fatty
liver disease.
Gastroenterology.
2006;
130
1343-1346
MissingFormLabel
- 17
Frohnert B I, Bernlohr D A.
Regulation of fatty acid transporters in mammalian cells.
Prog Lipid Res.
2000;
39
83-107
MissingFormLabel
- 18
Stahl A, Gimeno R E, Tartaglia L A. et al .
Fatty acid transport proteins: a current view of a growing family.
Trends Endocrinol Metab.
2001;
12
266-273
MissingFormLabel
- 19
Tennyson G E, Sabatos C A, Higuchi K. et al .
Expression of apolipoprotein B mRNAs encoding higher- and lower-molecular weight isoproteins
in rat liver and intestine.
Proc Natl Acad Sci USA.
1989;
86
500-504
MissingFormLabel
- 20
Lavoie J M, Gauthier M S.
Regulation of fat metabolism in the liver: link to non-alcoholic hepatic steatosis
and impact of physical exercise.
Cell Mol Life Sci.
2006;
63
1393-1409
MissingFormLabel
- 21
Bradbury M W.
Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: possible role
in steatosis.
Am J Physiol Gastrointest Liver Physiol.
2006;
290
G194-G198
MissingFormLabel
- 22
Donnelly K L, Smith C I, Schwarzenberg S J. et al .
Sources of fatty acids stored in liver and secreted via lipoproteins in patients with
non-alcoholic fatty liver disease.
J Clin Invest.
2005;
115
1343-1351
MissingFormLabel
- 23
Miller J P.
Serum triglycerides, the liver and the pancreas.
Curr Opin Lipidol.
2000;
11
377-382
MissingFormLabel
- 24
Feldstein A, Canbay A, Guicciardi M E. et al .
Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice.
J Hepatol.
2003;
39
978-983
MissingFormLabel
- 25
Feldstein A E, Werneburg N W, Canbay A. et al .
Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression
via a lysosomal pathway.
Hepatology.
2004;
40
185-194
MissingFormLabel
- 26
Canbay A, Gieseler R K, Gores G J. et al .
The relationship between apoptosis and non-alcoholic fatty liver disease: an evolutionary
cornerstone turned pathogenic.
Z Gastroenterol.
2005;
43
211-217
MissingFormLabel
- 27
Canbay A, Chen S Y, Gieseler R K. et al .
Overweight patients are more susceptible for acute liver failure.
Hepatogastroenterology.
2005;
52
1516-1520
MissingFormLabel
- 28
Ravikumar B, Carey P E, Snaar J E. et al .
Real-time assessment of postprandial fat storage in liver and skeletal muscle in health
and type 2 diabetes.
Am J Physiol Endocrinol Metab.
2005;
288
E789-E797
MissingFormLabel
- 29
Harmon C M, Abumrad N A.
Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation
and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain
fatty acids.
J Membr Biol.
1993;
133
43-49
MissingFormLabel
- 30
Bonen A, Parolin M L, Steinberg G R. et al .
Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with
increased rates of skeletal muscle fatty acid transport and increased sarcolemmal
FAT/CD36.
Faseb J.
2004;
18
1144-1146
MissingFormLabel
- 31
Bonen A, Campbell S E, Benton C R. et al .
Regulation of fatty acid transport by fatty acid translocase/CD36.
Proc Nutr Soc.
2004;
63
245-249
MissingFormLabel
- 32
Gavrilova O, Haluzik M, Matsusue K. et al .
Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis,
triglyceride clearance, and regulation of body fat mass.
J Biol Chem.
2003;
278
34 268-34 276
MissingFormLabel
- 33
Daniel E E, El-Yazbi A, Cho W J.
Caveolae and calcium handling, a review and a hypothesis.
J Cell Mol Med.
2006;
10
444-529
MissingFormLabel
- 34
Fernandez M A, Albor C, Ingelmo-Torres M. et al .
Caveolin-1 is essential for liver regeneration.
Science.
2006;
313
1628-1632
MissingFormLabel
- 35
Pol A, Martin S, Fernandez M A. et al .
Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid
body motility and function by a dominant negative mutant.
Mol Biol Cell.
2004;
15
99-110
MissingFormLabel
- 36
Tamura S, Shimomura I.
Contribution of adipose tissue and de novo lipogenesis to non-alcoholic fatty liver
disease.
J Clin Invest.
2005;
115
1139-1142
MissingFormLabel
- 37
Fromenty B, Robin M A, Igoudjil A. et al .
The ins and outs of mitochondrial dysfunction in NASH.
Diabetes Metab.
2004;
30
121-138
MissingFormLabel
- 38
Hashimoto T, Cook W S, Qi C. et al .
Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation
determines the severity of hepatic steatosis in response to fasting.
J Biol Chem.
2000;
275
28 918-28 928
MissingFormLabel
- 39
Ip E, Farrell G C, Robertson G. et al .
Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis
in mice.
Hepatology.
2003;
38
123-132
MissingFormLabel
- 40
Savage D B, Choi C S, Samuel V T. et al .
Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense
oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2.
J Clin Invest.
2006;
116
817-824
MissingFormLabel
- 41
McGarry J D, Foster D W.
Effects of exogenous fatty acid concentration on glucagon-induced changes in hepatic
fatty acid metabolism.
Diabetes.
1980;
29
236-240
MissingFormLabel
- 42
Dentin R, Pegorier J P, Benhamed F. et al .
Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c
on glycolytic and lipogenic gene expression.
J Biol Chem.
2004;
279
20 314-20 326
MissingFormLabel
- 43
Postic C, Dentin R, Girard J.
Role of the liver in the control of carbohydrate and lipid homeostasis.
Diabetes Metab.
2004;
30
398-408
MissingFormLabel
- 44
Jamerson P A.
The association between acute fatty liver of pregnancy and fatty acid oxidation disorders.
J Obstet Gynecol Neonatal Nurs.
2005;
34
87-92
MissingFormLabel
- 45
Okuda M, Li K, Beard M R. et al .
Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced
by hepatitis C virus core protein.
Gastroenterology.
2002;
122
366-375
MissingFormLabel
- 46
Yamaguchi A, Tazuma S, Nishioka T. et al .
Hepatitis C virus core protein modulates fatty acid metabolism and thereby causes
lipid accumulation in the liver.
Dig Dis Sci.
2005;
50
1361-1371
MissingFormLabel
- 47
Liao Y, Shikapwashya O N, Shteyer E. et al .
Delayed hepatocellular mitotic progression and impaired liver regeneration in early
growth response-1-deficient mice.
J Biol Chem.
2004;
279
43 107-43 116
MissingFormLabel
- 48
Farrell G C.
Probing Prometheus: fat fueling the fire?.
Hepatology.
2004;
40
1252-1255
MissingFormLabel
- 49
Fausto N.
Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells.
Hepatology.
2004;
39
1477-1487
MissingFormLabel
- 50
Brasaemle D L.
Cell biology. A metabolic push to proliferate.
Science.
2006;
313
1581-1582
MissingFormLabel
- 51
Shteyer E, Liao Y, Muglia L J. et al .
Disruption of hepatic adipogenesis is associated with impaired liver regeneration
in mice.
Hepatology.
2004;
40
1322-1332
MissingFormLabel
- 52
Michalopoulos G, Cianciulli H D, Novotny A R. et al .
Liver regeneration studies with rat hepatocytes in primary culture.
Cancer Res.
1982;
42
4673-4682
MissingFormLabel
- 53
Kuhajda F P, Jenner K, Wood F D. et al .
Fatty acid synthesis: a potential selective target for antineoplastic therapy.
Proc Natl Acad Sci USA.
1994;
91
6379-6383
MissingFormLabel
Ali Canbay, MD
Division of Gastroenterology and Hepatology, Department of Medicine, University Hospital,
University of Duisburg-Essen
Hufelandstr. 55
45122 Essen
Germany
Telefon: ++49/2 01/7 23 36 11
Fax: ++49/2 01/7 23 59 70
eMail: ali.Canbay@uni-due.de