Planta Med 2006; 72(7): 596-603
DOI: 10.1055/s-2006-931555
Original Paper
Pharmacology
© Georg Thieme Verlag KG Stuttgart · New York

Influence of Biotransformation of Luteolin, Luteolin 7-O-Glucoside, 3′,4′-Dihydroxyflavone and Apigenin by Cultured Rat Hepatocytes on Antioxidative Capacity and Inhibition of EGF Receptor Tyrosine Kinase Activity

Doreen Schlupper1 , Sabine Giesa2 , Rolf Gebhardt1
  • 1Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
  • 2Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
Further Information

Publication History

Received: October 24, 2005

Accepted: January 10, 2006

Publication Date:
29 May 2006 (online)

Abstract

Flavonoids are known as biologically active compounds. Although this has been shown by several in vivo studies, it is still elusive whether their metabolites exert similar activities. Herein we investigated the biotransformation of four different flavonoids, 3′,4′-dihydroxyflavone, apigenin, luteolin and luteolin 7-O-glucoside, by cultured rat hepatocytes using a combination of enzymatic deconjugation, HPLC separation and high-resolution mass spectrometry. These flavonoids were chosen because they are active components of many plants, e. g., artichokes. All flavonoids showed rather complex metabolite patterns dominated by phase II metabolites, mainly sulfates, methyl sulfates and methyl glucuronides, but also of combined glucuronide and sulfate conjugates. Phase I metabolism by hydroxylation was rendered likely only for apigenin to form luteolin. When culture media containing the flavonoids and their metabolites were assayed for antioxidative capacity by the DPPH assay, only compounds with hydroxy groups in position 3′ and 4′ of the B ring were active. Thus, during metabolism of (inactive) apigenin a strong increase in the antioxidative effect was observed while that of the other three flavonoids decreased with time. Determination of EGF receptor tyrosine kinase activity likewise revealed strong inhibition in the presence of a catechol group at ring B. However, in this case the situation was much more complex resulting in a significant increase of the inhibitory activity of 3′,4′-dihydroxyflavone and apigenin, but not of luteolin and luteolin 7-O-glucoside during 22 h of incubation. These results show that the biotransformation of flavonoids is very complex and may result not only in a loss but also in a gain of biological activity depending on the individual structural features.

References

  • 1 Clifford M N. Diet-derived phenols in plasma and tissues and their implications for health.  Planta Med. 2004;  70 1103-14
  • 2 Rice-Evans C A. Flavonoid antioxidants.  Curr Med Chem. 2001;  8 797-807
  • 3 Le Marchand L. Cancer preventive effects of flavonoids - a review.  Biomed Pharmacother. 2002;  56 296-301
  • 4 Hagiwara M, Inoue S, Tanaka T, Nunoki K, Ito M, Hidaka H. Differential effects of flavonoids as inhibitors of tyrosine protein kinases and serine/threonine protein kinases.  Biochem Pharmacol. 1988;  37 2987-92
  • 5 Jinsart W, Ternai B, Polya G M. Inhibition of rat liver cyclic AMP-dependent protein kinase by flavonoids.  Biol Chem Hoppe Seyler. 1992;  373 205-11
  • 6 Huang Y T, Hwang J J, Lee P P, Ke F E, Hang J H, Huang C J. et al . Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epithermal growth factor receptor.  Br J Pharmacol. 1999;  128 999-1010
  • 7 Conseil G, Baubichon-Cortay H, Dayan G, Jault J M, Baron D, Di Pietro A. Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein.  Proc Natl Acad Sci USA. 1998;  95 9831-6
  • 8 Ende C, Gebhardt R. Inhibition of matrix metalloproteinase-2 and -9 activities by selected flavonoids.  Planta Med. 2004;  70 1006-8
  • 9 Abou-Shoer M. Flavonoids from Hoelreuteria henryi and other sources as protein-tyrosine kinase inhibitors.  J Nat Prod. 1993;  56 967-9
  • 10 Oblak M, Randic M, Solmajer T. Quantitative structure-activity relationship of flavonoid analogues. Inhibition of p56lck protein tyrosine kinase.  J Chem Inf Comput Sci. 2000;  979 10-26
  • 11 Agullo G, Gamet-Payrastre L, Manenti S, Viala C, Remesy C, Chap H. et al . Relationship between flavonoid structure and inhibition of phosphatidinositol 3-kinase: protein kinase c inhibition.  Biochem Pharmacol. 1997;  53 1649-57
  • 12 Scalbert A, Morand C, Manach C, Remesy C. Absorption and metabolism of polyphenols in the gut and impact on health.  Biomed Pharmacother. 2002;  56 276-82
  • 13 Rice-Evans C. Flavonoids and isoflavones: absorption, metabolism and bioactivity.  Free Radic Biol Med. 2004;  36 827-8
  • 14 Wittemer S M, Ploch M, Windeck T, Mueller S C, Drewelow B, Derendorf H. et al . Bioavailability and pharmacokinetics of caffeolylquinic acids and flavonoids after oral administration of artischoke leaf extract in humans.  Phytomedicine. 2005;  12 28-38
  • 15 Spencer J P, Abd-el-Mohsen M M, Rice-Evans C. Cellular uptake and metabolism of flavonoids and their metabolites: implication for their bioactivity.  Arch Biochem Biophys. 2004;  432 148-61
  • 16 Butterweck V, Hegger M, Winterhoff H. Flavonoids of St. John’s wort reduce HPA axis function in the rat.  Planta Med. 2004;  70 1008-11
  • 17 Gläßer G, Graefe E U, Struck F, Veit M, Gebhardt R. Comparison of antioxidant capacities and inhibitory effects on cholesterol biosynthesis of quercetin and potential metabolites.  Phytomedicine. 2002;  9 33-40
  • 18 Gebhardt R, Fitzke H, Fausel M, Eisenmann-Tappe I, Mecke D. Influence of hormones and drugs on glutathione S-transferase levels in primary culture of adult rat hepatocytes.  Cell Biol Toxicol. 1990;  6 365-78
  • 19 Bradford M M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein binding.  Anal Biochem. 1976;  72 248-54
  • 20 Wang M, Shao Y, Li J, Zhu N, Rangaraajan M, Edmond J. Antioxidative phenolic glycosides from Sage (Salvia officinalis).  J Nat Prod. 1999;  62 454-6
  • 21 Rijksen G, van Oirschot B A, Staal G EJ. Nonradioactive assays of protein tyrosine kinase activity using anti-phosphotyrosine antibodies.  Methods Enzymol. 1991;  200 98-107
  • 22 Breinholt V M, Rasmussen S E, Brøsen K, Friedberg T H. In vitro metabolism of genistein and tangeretin by human and murine cytochrome P450s.  . 2003;  93 14-22
  • 23 Boersma M G, van der Woude H, Bogaards J, Boersen S, Vervoort J, Cnubben N HP. et al . Regioselectivity of phase II metabolism of luteolin and quercetin by UDP-glucuronosyltransferases.  Chem Res Toxicol. 2002;  15 662-70
  • 24 Otake Y, Hsieh F, Walle T. Glucuronidation versus oxidation of the flavonoid galangin by human liver microsomes and hepatocytes.  Drug Metab Dispos. 2002;  30 576-81
  • 25 Galjiatovic A, Otake Y, Walle U K, Walle T. Extensive metabolism of the flavonoid chrysin by human Caco-2 and Hep G2-cells.  Xenobiotica. 1999;  29 1241-56
  • 26 Oliveira E J, Watson D G, Grant M H. Metabolism of quercetin and kaempferol by rat hepatocytes and the identification of flavonoid glycosides in human plasma.  Xenobiotica. 2002;  32 279-87
  • 27 Morand C, Crespy V, Manach C, Besson C, Demigne C, Remesy C. Plasma metabolites of quercetin and their antioxidant properties.  Am J Physiol. 1998;  275 212-9
  • 28 Boulton D W, Walle U K, Walle T. Fate of the flavonoid quercetin in human cell lines: chemical instability and metabolism.  J Pharmacol. 1999;  51 353-9
  • 29 Lemanska K, Van der Woude H, Szymusiak H, Boersma M G, Gliszczynska-Swiglo A, Rietjens I MCM. et al . The effect of catechol O-methylation on radical scavenging characteristics of quercetin and luteolin - a mechanistic insight.  Free Radic Res. 2004;  38 639-47
  • 30 Justino G C, Santos M R, Canario S, Borges C, Florencio M H, Mira L. Plasma quercetin metabolites: structure-antioxidant activity relationship.  Arch Biochem Biophys. 2004;  432 109-21

Prof. Dr. Rolf Gebhardt

Institute of Biochemistry

Medical Faculty

University of Leipzig

Johannisallee 30

04103 Leipzig

Germany

Phone: +49-341 972-2100

Fax: +49 341-972-2109

Email: Rolf.Gebhardt@medizin.uni-leipzig.de