Zusammenfassung
Morbus Fabry (M. Fabry) ist eine seltene X-chromosomal vererbte lysosomale Speicherkrankheit, bei der es durch Defizienz des Enzyms α-Galaktosidase A (α-GAL) zur progredienten Akkumulation von Glykosphingolipiden (v. a. Gb3) in Lysosomen verschiedener Organsysteme kommt, wobei insbesondere das vaskuläre Endothel und glatte Muskelzellen betroffen sind. Zerebrale Manifestationen sind häufig verlaufs- und prognosebestimmend. Die vorliegende Arbeit gibt eine systematische Übersicht über die vorliegende Literatur zu den hirnstrukturellen Befunden bei Patienten mit M. Fabry und diskutiert die z. T. noch unklaren pathophysiologischen Aspekte der hirnstrukturellen und zerebrovaskulären Veränderungen. Zerebrovaskuläre Ereignisse (v. a. Hirninfarkt, TIA) treten bei M. Fabry häufig schon in jungen Jahren auf, auch bei heterozygoten Frauen. In der strukturellen kraniellen Bildgebung können schon bei jungen Patienten so genannte „White Matter Lesions” (WML) beobachtet werden. Verschiedene pathophysiologische Aspekte der Entwicklung von zerebraler Angiopathie und WML bei M. Fabry werden im Hinblick auf die aktuelle Studienlage erörtert. Neben den WML stellen Signalanhebungen im Bereich des Pulvinar (T1-Wichtung) sowie ausgeprägte Polichoektasien der großen Gefäße, insbesondere im hinteren Stromgebiet, wegweisende Befunde dar. Durch neuere Methoden kranialer Bildgebung wie der Diffusions-Tensor-Bildgebung lässt sich möglicherweise ein Muster zerebraler Affektion schon vor dem Auftreten von WML bei jungen Fabry-Patienten quantitativ erfassen. Hierdurch könnte auch ein möglicher Einfluss der Enzymersatztherapie auf die Entwicklung der hirnstrukturellen Veränderungen sensitiv bestimmt werden. Es sollte aufgrund der aktuellen Datenlage erwogen werden, ob eine Screening-Untersuchung auf M. Fabry mittels Gb3-Bestimmung im Urin bei jungen Patienten (< 55 Jahre) mit ätiologisch unklarem ischämischen Hirninfarkt sinnvoll ist. In jedem Fall sollte man an M. Fabry als mögliche Schlaganfallursache denken und auf typische klinische Merkmale achten.
Abstract
Fabry Disease (FD) is a rare X-linked lysosomal storage disorder caused by deficiency of α-galactosidase A (α-GAL) enzyme activity. Neutral glycosphingolipides (esp. Gb3) accumulate in lysosomes of several tissues, particularly in vascular endothelium and smooth muscle cells. Cerebral manifestations that might be mainly due to progressive cerebrovascular dysfunction, are one major and often life-threatening burden of the disease. We reviewed the present literature concerning brain structural alterations in FD and discuss the possibly relevant underlying pathophysiological aspects of these disturbances. Cerebrovascular events (TIA, stroke) occur in FD at a rather early age. In female FD patients who were considered to be less affected “carriers” for a long time, the prevalence of cerebrovascular events seems to be at last as high as in male patients. In structural imaging white matter lesions (WML) can be found frequently even in young FD patients. In a recent study clinically equally affected men and women with FD showed a comparable severity of WML load. Different pathophysiological aspects of cerebral angiopathy and WML development are discussed against the background of current concepts (e. g. accumulation of Gb3 in vascular endothelium with consecutive cell proliferation and luminal stenosis, acceleration of focal intravasal pressure and disturbances of vascular auto-regulation). Pathological increase of pulvinar signal in T1-weighted MRI has also been described in FD. This finding was assumed to be caused by calcification as a consequence of disturbed local circulation. To enhance our knowledge about the relevant neurobiological processes the authors propose a more sensitive and early detection of brain structural changes in FD. New brain structural MRI methods such as diffusion-tensor imaging could provide a pattern of ultrastructural changes even in young patients without visible WML. This strategy could be as well useful for quantification of possible effects of the enzyme replacement therapy on brain structural alterations in FD. Based on recent data a systematic FD-screening by measuring Gb3 in urine of young patients with cryptogenic stroke should be discussed. Basically in such cases FD should be clinically considered.
Schlüsselwörter
Morbus Fabry - White Matter Lesions (WML) - Hirninfarkt
Key words
Fabry Disease - White Matter Lesions (WML) - stroke
Literatur
1
Jansen T BF, Altmeyer P.
Angiokeratoma corporis diffusum in Fabry disease: an historical perspective.
Acta Paediatrica Suppl.
2005;
94
95
2
Meikle P J, Hopwood J J, Clague A E, Carey W F.
Prevalence of lysosomal storage disorders.
Jama.
1999;
281
249-254
3 Desnick R JIY, Eng C M. Galactosidase A deficiency: Fabry disease. New York 2001
4
Schäfer E, Baron K, Widmer U, Deegan P, Neumann H P, Sunder-Plassmann G, Johansson J O, Whybra C, Ries M, Pastores G M, Mehta A, Beck M, Gal A.
Thirty-four novel mutations of the GLA gene in 121 patients with Fabry disease.
Hum Mutat.
2005;
25
412
5
Morgan S H, Rudge P, Smith S J, Bronstein A M, Kendall B E, Holly E, Young E P, Crawfurd M D, Bannister R.
The neurological complications of Anderson-Fabry disease (α-galactosidase A deficiency) - investigation of symptomatic and presymptomatic patients.
Q J Med.
1990;
75
491-507
6
Hughes D A, Mehta A B.
Vascular complications of Fabry disease: enzyme replacement and other therapies.
Acta Paediatr Suppl.
2005;
94
28-33; discussion 29 - 10
7
Mehta A, Ricci R, Widmer U, Dehout F, Garcia De Lorenzo A, Kampmann C, Linhart A, Sunder-Plassmann G, Ries M, Beck M.
Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry Outcome Survey.
Eur J Clin Invest.
2004;
34
236-242
8
MacDermot K D, Holmes A, Miners A H.
Anderson-Fabry disease: clinical manifestations and impact of disease in a cohort of 98 hemizygous males.
J Med Genet.
2001;
38
750-760
9
Grewal R P.
Psychiatric disorders in patients with Fabry's disease.
Int J Psychiatry Med.
1993;
23
307-312
10
MacDermot K D, Holmes A, Miners A H.
Anderson-Fabry disease: clinical manifestations and impact of disease in a cohort of 60 obligate carrier females.
J Med Genet.
2001;
38
769-775
11
Kampmann C, Baehner F, Ries M, Beck M.
Cardiac involvement in Anderson-Fabry disease.
J Am Soc Nephrol.
2002;
13 Suppl 2
S147-149
12
Kampmann C, Wiethoff C M, Perrot A, Beck M, Dietz R, Osterziel K J.
The heart in Anderson Fabry disease.
Z Kardiol.
2002;
91
786-795
13
Whybra C, Kampmann C, Willers I, Davies J, Winchester B, Kriegsmann J, Bruhl K, Gal A, Bunge S, Beck M.
Anderson-Fabry disease: clinical manifestations of disease in female heterozygotes.
J Inherit Metab Dis.
2001;
24
715-724
14
Whybra C, Wendrich K, Ries M, Gal A, Beck M.
Clinical manifestation in female Fabry disease patients.
Contrib Nephrol.
2001;
36
245-250
15
Schiffmann R, Murray G J, Treco D, Daniel P, Sellos-Moura M, Myers M, Quirk J M, Zirzow G C, Borowski M, Loveday K, Anderson T, Gillespie F, Oliver K L, Jeffries N O, Doo E, Liang T J, Kreps C, Gunter K, Frei K, Crutchfield K, Selden R F, Brady R O.
Infusion of α-galactosidase A reduces tissue globotriaosylceramide storage in patients with Fabry disease.
Proc Natl Acad Sci U S A.
2000;
97
365-370
16
Eng C M, Guffon N, Wilcox W R, Germain D P, Lee P, Waldek S, Caplan L, Linthorst G E, Desnick R J.
Safety and efficacy of recombinant human α-galactosidase A - replacement therapy in Fabry's disease.
N Engl J Med.
2001;
345
9-16
17
Schiffmann R, Kopp J B, Austin 3rd H A, Sabnis S, Moore D F, Weibel T, Balow J E, Brady R O.
Enzyme replacement therapy in Fabry disease: a randomized controlled trial.
Jama.
2001;
285
2743-2749
18
Beck M, Ricci R, Widmer U, Dehout F, de Lorenzo A G, Kampmann C, Linhart A, Sunder-Plassmann G, Houge G, Ramaswami U, Gal A, Mehta A.
Fabry disease: overall effects of agalsidase alfa treatment.
Eur J Clin Invest.
2004;
34
838-844
19
Baehner F, Kampmann C, Whybra C, Miebach E, Wiethoff C M, Beck M.
Enzyme replacement therapy in heterozygous females with Fabry disease: results of a phase IIIB study.
J Inherit Metab Dis.
2003;
26
617-627
20
MacDermot J, MacDermot K D.
Neuropathic pain in Anderson-Fabry disease: pathology and therapeutic options.
Eur J Pharmacol.
2001;
429
121-125
21
Grau A J, Schwaninger M, Goebel H H, Beck M.
[Fabry's disease: new therapeutic options for this lysosomal storage disorder].
Nervenarzt.
2003;
74
489-496
22
Ries M, Ramaswami U, Parini R, Lindblad B, Whybra C, Willers I, Gal A, Beck M.
The early clinical phenotype of Fabry disease: a study on 35 European children and adolescents.
Eur J Pediatr.
2003;
162
767-772
23
Müller J M, Müller K-M, Dascalescu A, Whybra C, Baron K, Scheurich A, Mann K, Beck M, Schmidt L G, Fellgiebel A.
Psychiatric ad Neuropsychological Signs and Symptoms in Patients with Fabry Disease: Literature Review.
Fortschr Neurol Psychiat.
2005;
73
687-693
24
Dütsch M, Marthol H, Stemper B, Brys M, Haendl T, Hilz M J.
Small fiber dysfunction predominates in Fabry neuropathy.
J Clin Neurophysiol.
2002;
19
575-586
25
Cable W J, Dvorak A M, Osage J E, Kolodny E H.
Fabry disease: significance of ultrastructural localization of lipid inclusions in dermal nerves.
Neurology.
1982;
32
347-353
26
Toyooka K, Said G.
Nerve biopsy findings in hemizygous and heterozygous patients with Fabry's disease.
J Neurol.
1997;
244
464-468
27
Hilz M J, Brys M, Marthol H, Stemper B, Dutsch M.
Enzyme replacement therapy improves function of C-, Adelta-, and Abeta-nerve fibers in Fabry neuropathy.
Neurology.
2004;
62
1066-1072
28
Mehta A, Ginsberg L.
Natural history of the cerebrovascular complications of Fabry disease.
Acta Paediatr Suppl.
2005;
94
24-27; discussion 29 - 10
29
Rolfs A BT, Zschiesche M, Morris P, Winchester B, Bauer P, Walter U, Mix E, Bottcher T, Löhr M, Harzer K, Strauss U, Pahnke J, Grossmann A, Benecke R.
High prevalence of fabry disease in a prospective study of young patients with cryptogenic stroke.
The Lancet.
2005;
in press
366
1794-1796
30
Crutchfield K E, Patronas N J, Dombrosia J M, Frei K P, Banerjee T K, Barton N W, Schiffmann R.
Quantitative analysis of cerebral vasculopathy in patients with Fabry disease.
Neurology.
1998;
50
1746-1749
31
Takanashi J, Barkovich A J, Dillon W P, Sherr E H, Hart K A, Packman S.
T1 hyperintensity in the pulvinar: key imaging feature for diagnosis of Fabry disease.
AJNR Am J Neuroradiol.
2003;
24
916-921
32
Moore D F, Ye F, Schiffmann R, Butman J A.
Increased signal intensity in the pulvinar on T1-weighted images: a pathognomonic MR imaging sign of Fabry disease.
AJNR Am J Neuroradiol.
2003;
24
1096-1101
33
Fellgiebel A, Müller M J, Mazanek M, Baron K, Beck M, Stoeter P.
White matter lesion severity in male and female patients with Fabry disease.
Neurology.
2005;
65
600-602
34
Gupta S, Ries M, Kotsopoulos S, Schiffmann R.
The relationship of vascular glycolipid storage to clinical manifestations of fabry disease: a cross-sectional study of a large cohort of clinically affected heterozygous women.
Medicine (Baltimore).
2005;
84
261-268
35
Moore D F, Altarescu G, Barker W C, Patronas N J, Herscovitch P, Schiffmann R.
White matter lesions in Fabry disease occur in "prior" selectively hypometabolic and hyperperfused brain regions.
Brain Res Bull.
2003;
62
231-240
36
Mitsias P, Levine S R.
Cerebrovascular complications of Fabry's disease.
Ann Neurol.
1996;
40
8-17
37
Grewal R P.
Stroke in Fabry's disease.
J Neurol.
1994;
241
153-156
38
Elleder M.
Sequelae of storage in Fabry disease - pathology and comparison with other lysosomal storage diseases.
Acta Paediatrica Suppl.
2003;
92
46-53
39
Moore D F, Scott L T, Gladwin M T, Altarescu G, Kaneski C, Suzuki K, Pease-Fye M, Ferri R, Brady R O, Herscovitch P, Schiffmann R.
Regional cerebral hyperperfusion and nitric oxide pathway dysregulation in Fabry disease: reversal by enzyme replacement therapy.
Circulation.
2001;
104
1506-1512
40
Altarescu G, Moore D F, Pursley R, Campia U, Goldstein S, Bryant M, Panza J A, Schiffmann R.
Enhanced endothelium-dependent vasodilation in Fabry disease.
Stroke.
2001;
32
1559-1562
41
DeGraba T, Azhar S, Dignat-George F, Brown E, Boutiere B, Altarescu G, McCarron R, Schiffmann R.
Profile of endothelial and leukocyte activation in Fabry patients.
Ann Neurol.
2000;
47
229-233
42
Pantoni L, Garcia J H.
Pathogenesis of leukoaraiosis: a review.
Stroke.
1997;
28
652-659
43
Bisschops R H, Graaf Y van der, Mali W P, Grond J van der.
High total cerebral blood flow is associated with a decrease of white matter lesions.
J Neurol.
2004;
251
1481-1485
44
Shibata M, Ohtani R, Ihara M, Tomimoto H.
White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion.
Stroke.
2004;
35
2598-2603
45
Itoh Y, Esaki T, Cook M, Qasba P, Shimoji K, Alroy J, Brady R O, Sokoloff L, Moore D F.
Local and global cerebral blood flow and glucose utilization in the α-galactosidase A knockout mouse model of Fabry disease.
J Neurochem.
2001;
79
1217-1224
46
Hilz M J, Kolodny E H, Brys M, Stemper B, Haendl T, Marthol H.
Reduced cerebral blood flow velocity and impaired cerebral autoregulation in patients with Fabry disease.
J Neurol.
2004;
251
564-570
47
Ritter M, Dittrich R, Droste D W.
Microembolus detection in four patients with Fabry's disease: further support for a primarily microangiopathic origin of early cerebrovascular symptoms.
Eur Neurol.
2003;
50
141-145
48
Dobrovolny R, Dvorakova L, Ledvinova J, Magage S, Bultas J, Lubanda J C, Elleder M, Karetova D, Pavlikova M, Hrebicek M.
Relationship between X-inactivation and clinical involvement in Fabry heterozygotes. Eleven novel mutations in the α-galactosidase A gene in the Czech and Slovak population.
J Mol Med.
2005;
83
647-654
49
Ashton-Prolla P, Tong B, Shabbeer J, Astrin K H, Eng C M, Desnick R J.
Fabry disease: twenty-two novel mutations in the α-galactosidase A gene and genotype/phenotype correlations in severely and mildly affected hemizygotes and heterozygotes.
J Investig Med.
2000;
48
227-235
50
de Veber G A, Schwarting G A, Kolodny E H, Kowall N W.
Fabry disease: immunocytochemical characterization of neuronal involvement.
Ann Neurol.
1992;
31
409-415
51
Kaye E M, Kolodny E H, Logigian E L, Ullman M D.
Nervous system involvement in Fabry's disease: clinicopathological and biochemical correlation.
Ann Neurol.
1988;
23
505-509
52
Rahman A N, Lindenberg R.
The Neuropathology of Hereditary Dystopic Lipidosis.
Arch Neurol.
1963;
147
373-385
53
Tedeschi G, Bonavita S, Banerjee T K, Virta A, Schiffmann R.
Diffuse central neuronal involvement in Fabry disease: a proton MRS imaging study.
Neurology.
1999;
52
1663-1667
54
Moore D F, Altarescu G, Ling G S, Jeffries N, Frei K P, Weibel T, Charria-Ortiz G, Ferri R, Arai A E, Brady R O, Schiffmann R.
Elevated cerebral blood flow velocities in Fabry disease with reversal after enzyme replacement.
Stroke.
2002;
33
525-531
55
Jardim L, Vedolin L, Schwartz I V, Burin M G, Cecchin C, Kalakun L, Matte U, Aesse F, Pitta-Pinheiro C, Marconato J, Giugliani R.
CNS involvement in Fabry disease: clinical and imaging studies before and after 12 months of enzyme replacement therapy.
J Inherit Metab Dis.
2004;
27
229-240
56
Fellgiebel A, Wille P, Müller M J, Winterer G, Scheurich A, Vucurevic G, Schmidt L G, Stoeter P.
Ultrastructural hippocampal and white matter alterations in mild cognitive impairment: a diffusion tensor imaging study.
Dement Geriatr Cogn Disord.
2004;
18
101-108
57
Prins ND, van Straaten EC, van Dijk EJ, Simom M, van Schijndel RA, Vrooman HA, Koudstaal PJ, Scheltens P, Breteler MM.
Measuring progression of cerebral white matter lesions on MRI: visual rating and volumetrics.
Neurology.
2004;
62
1533-1539
Dr. med. Andreas Fellgiebel
Psychiatrische Klinik und Poliklinik · Universität Mainz
Untere Zahlbacher Str. 8
55131 Mainz
eMail: fellgiebel@psychiatrie.klinik.uni-mainz.de