Zusammenfassung
n-Butyrat wird als Stoffwechselprodukt des anaeroben Abbaus hochpolymerer Pflanzenspeicherstoffe
durch die physiologische Dickdarmflora gebildet. Die Bedeutung von n-Butyrat liegt
in seiner Funktion als wichtigster Energielieferant der Kolonozyten und somit
in einer stabilisierenden Wirkung auf die Kolonmukosa. Extraintestinal versorgt
n-Butyrat den mitochondrialen Energiestoffwechsel von Muskel- und Hirnzellen.
Daneben hat n-Butyrat eine Vielzahl wichtiger regulativer Aufgaben in den zellulären
Abläufen zu übernehmen.
n-Butyrat steuert die Transkription und die posttranslationelle Modifikation von
Eiweißen. Ein bedeutender Angriffspunkt sind nukleäre Transkriptionsfaktoren wie
NFκB, die Einfluss auf die Entgiftung radikalischer Produkte, aber auch auf die
Steuerung der Immunität über das TH1/TH2-Verhältnis und den gesteuerten programmierten Zelltod (Apoptose) haben. Einen
entscheidenden Einfluss auf die Apoptose und die Zelldifferenzierung übt n-Butyrat
durch Steuerung des Zellzyklus und der Zellteilung aus. n-Butyrat hat somit einen
direkten Einfluss auf die Entstehung von Krebs und kann als natürliche Chemoprophylaxe
verstanden werden. Die Diagnostik der körperlichen Versorgung mit n-Butyrat wird
vorgestellt. Ebenso wird der Einsatz eines neu entwickelten funktionellen Lebensmittels
zur Verbesserung der n-Butyrat-Versorgung besprochen.
Abstract
Butyric acid is a product of the anaerobic metabolism of highly polymeric plant
fiber polysaccharides by the large intestine flora. Butyrate is an important energy
source for colonozytes and thereby preventing the leaky-gut-syndrome. Butyrate
regulates lipid metabolism, proinflammatory response, cell cycle, cell differentiation
and tumorgenesis. The assessment of faecal butyric acid concentrations and their
clinical relevance are discussed. The beneficial potential of optimal butyrate
supply and its experimental effects on cancer is described.
Schlüsselwörter
Butyrat - Darmflora - Stoffwechsel - Entzündungshemmung - Chemoprophylaxe
Keywords
Butyrate - intestinal flora - metabolism - antiinflammatory - chemoprevention
Literatur
- 01
Archer S Y, Hodin R A.
Histon acetylation and cancer.
Current Opinion in Genetics and Development.
1999;
9
171-174
- 02
Archer
, Meng
, Shu
, Hodin
.
p21 WAF1 is required for butyrate - mediated growth inhibition of human colon cancer
cells.
Proceedings of the National Academy of Science of the United States of America.
1998;
95.
6791-6796
- 03
Bai I, Merchant G L.
Transcription factor ZBP-89 cooperates with histone acetyltransferase p300 during
butyrate activation of p21 WAF1 transcription in human cells.
Journal of Biological Chemistry.
2000;
275
30 725-30 733
- 04
Bocker U, Nebe T, Herweck F. et al .
Butyrate modulates intestinal epithelial cell-mediated neutrophil migration.
Clin. Exp. Immunol..
2003;
131
5-60
- 05
Boosalis M S, Bandyopadhyay R, Bresnick E H. et al .
Short-chain fatty acid derivates stimulate cell proliferation and induce STAT-5 activation.
Blood.
2001;
97
3259-3267
- 06
Bordin M, D'Atri F, Guillemot L, Citri S.
Histone deacetylase inhibitors up-regulate the expression of tight junction proteins.
Molecular cancer Research.
2004;
2
692-701
- 07
Bryant G, Habereon C, Rao C N, Liotta L A.
Butyrate induced reduction of tumor cell laminin receptors.
Cancer Research.
1986;
46
807-811
- 08
Bud A, Qualtrough D, Jepson M A, Martines D, Paraskeva C, Pignatelli M.
Butyrate down regulates λ2β1 integrin; a possible role in the induction of apoptosis
in colorectal cancer cell lines.
Gut.
2003;
52
729-734
- 09
Cavaglieri C R, Nishiyama A, Fernandes L C, Curi R, Miles E A, Calder P C.
Differential effects of short chain fatty acids on proliferation and production of
pro- and anti-inflammatory cytokines by cultured lymphocytes.
Life Science.
2003;
73
1683-1690
- 10
Chan W C, Dahl C, Waldman T. et al .
Large granular lymphocyte proliferation; an analysis of T-cell receptor gene arrangements
and expression and the effect of in vitro culture with inducing agents.
Blood.
1988;
71
52-58
- 11
Cummings J H, Macfarlaine.
The control and consequences of bacterial fermentation in the human colon.
Journal Appl. Bacteriol..
1991;
76
443-459
- 12
Duncan S H, Barcenilla A, Stewart C S, Pryde S E, Flint H J.
Acetate utilization and butyryl coenzyme (CoA): acetate-CoA transferase in butyrate.
producing bacteria from the human large intestine.
Applied and Enviromental Microbiology.
2002;
68
5186-5190
- 13
Emenaker N J, Calaf G M, Cox D, Basson M D, Qureshi N.
Short-chain fatty acids inhibit invasive human colon cancer by modulating uPA, TIMP-1,
TIMP-2, mutant p53 Bcl-2, Bax, p21 and PCNA protein expression in an in vitro cell
culture model.
Journal of Nutrition.
2001;
131
3041-3046
- 14
Frankel W L, Zhang W, Singh A. et al .
Mediation of the trophic effects of short-chain fatty acids on the rat jejunum and
colon.
Gastroenterology.
1994;
106
375-380
- 15
Fukuda M, Kanauchi O, Araki Y. et al .
Probiotic treatment of experimental colitis with germinated barley foodstuff: A comparison
with probiotic or antibiotic treatment.
International Journal of Molecular Medicine.
2002;
9
65-70
- 16
Hanafusa T, Shinji T, Shiraha H. et al .
Functional promoter upstream p53 regulatory sequence of IGFBP3 that is silenced by
tumor specific methylation.
BMC Cancer.
2005;
5
9-21
- 17
Hashizume K, Tsukahara T, Yamada K, Koyama K, Ushida U.
Megasphaera elsdenii. JCM 1772 normalizes hyperlactate production in the large intestine
of fructoseoligosaccharide fed rats by stimulating butyrate production.
Journal of Nutrition.
2003;
133
3187-3190
- 18
Jackson S K, DeLoose A, Gilbert K M.
Induction of energy in Th1 cells associated with increased levels of cyclindependent
kinase inhibitors p21Cip1 and p27Kip1.
J. Immunol..
2001;
166
952-958
- 19
Kiela P R, Ilines E R, Collins J F, Ghishan F K.
Regulation of the rat NH3 gene promoter by sodium butyrate.
American Journal of Gastroenterology and Liver Physiology.
2001;
281
947-956
- 20
Kobayashi H, Tan E M, Fleming S E.
Sodium butyrate inhibitis cell growth and stimulates p21 WAF1/CIP1 protein in human
colonic adenocarcima cells independently of p53 status.
Nutrition and Cancer.
2003;
46
202-211
- 21
Lamhamedi-Cherradi S E, Zheng S, Hillard B A. et al .
Transcriptional regulation of type I diabetes by NFκB.
The Journal of Immunology.
2003;
171
4886-4892
- 22 Leuvenik H. Regulation of feed intake in sheep: the role of hormones and metaboles. Dissertation
http://Library.wur.nl/wda/abstracts/ab2510.html
- 23
Marcil V, Delvin E, Seidman E. et al .
Modulation of lipid synthesis, apolipoprotein biogenesis and lipoprotein assembly
by butyrate.
American Journal of Gastroenterology and Liver Physiology.
2002;
283
340-346
- 24
Montiel F, Ortiz-Caro J, Villa A, Pascual A, Aranda A.
Presence of insulin receptors in cultered glial C6 cells regulation by butyrate.
Biochemical Journal.
1989;
258
147-155
- 25
Munshi A, Merland J F, Nishikawa T. et al .
Histone deacetylase inhibitors radiosensitize huma melanoma cells by suppressing DNA
repair activity.
Clinical Cancer Research.
2005;
11
4912-4922
- 26
Oertel S H, Riess H.
Antiviral treatment of Epstein-Barr virus-associated lymphoproliferations.
Recent Results Cancer Research.
2002;
159
89-95
- 27
Pei X Y, Dai Y, Grant S.
Synergistic induction of oxidative injury and apoptosis in human multiple myeloma
cells by the proteasome inhibitor bortezomide and histone deacytelase inhibitors.
Clinical Cancer Research.
2004;
10
3839-3852
- 28
Perrin P, Pierre F, Patry Y. et al .
Only fibres promoting a stable butyrate producing. In the colonic ecosystem decrease
the rate of aberrant crypt foci in rats.
Gut.
2001;
48
53-61
- 29
Powers A C, Philippe J, Hermann H, Habener J F.
Sodium butyrate increases glucagon and insulin gene expression by recruiting immunocytochemically
negative cells to produce hormone.
Diabetes.
1988;
10
1405-1410
- 30
Ritzhaupt A, Ellis A, Korie K B, Shirazi-Beechey.
The characterization of butyrate transport across pig and human luminal membrane.
The Journal of Physiology.
1998;
507
819-830
- 31
Roediger W E W.
Short chain fatty acids as metabolic regulators of ion absorption in the colon.
Acta Vet. Scand..
1989;
86
116-125
- 32
Sakata T.
Short chain fatty acids as the luminal trophic factor.
Canadian Journal of Animal Science.
1984;
86
116
- 33 Sakata T. Influence of short chain fatty acids on intestinal growth an function. In:
Kritchevsky D, Bonfield C (eds.): Dietary Fiber in Health and Disease. New York; Plenum
Press 1997: 191-199
- 34
Sato H, Hirose T, Limura T, Moriyama Y, Nakashima Y.
Analysis of human waste, feces and urine.
Journal of Health Science.
2001;
47
483-490
- 35
Schauber J, Svanholm C, Termin S. et al .
Expression of cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes;
relevance of signalling pathways.
Gut.
2003;
52
735-741
- 36
Scheppach W, Bartram P, Richter A. et al .
Effect of short chain fatty acids on the human colonic mucosa in vitro.
J. Parenter. Enter. Nutr..
1992;
16
43-48
- 37
Segnin J-P, Blitiere D R de la, Boureile A. et al .
Butyrate inhibits inflammatory responses through NFκB inhibition; implication for
Crohn's disease.
Gut.
2000;
47
397-403
- 38
Shimotoyodome A, Meguro S, Hase T, Tokimitsu I, Sakata T.
Short chain fatty acids, but not lactate or succinate, stimulate mucus release in
the rat colon.
Comp. Biochem. Physiol..
2000;
125A
525-531
- 39
Stein G, Kulemeier J, Lembcke B, Caspary W F.
Simple and rapid method for determination of short chain fatty acids in biological
materials by high-performance liquid chromatography with ultraviolett detection.
Journal of Chromatography.
1992;
576
53-61
- 40
Tiedge M, Lenzen S.
Effects of sodium butyrate on glucose transporter and glucose phosphorylating enzyme
gene expression in RINm5F insulinoma cells.
Journal of Molecular Endocrinology.
1996;
17
19-26
- 41
Umesahi Y, Yajima T, Yokokuwa T, Mutai M.
Effect of organic acid absorption or bicarbonate transport in rat colon.
Pflueg. Arch..
1979;
379
43-47
- 42
Unger S.
Die Bedeutung von Pro- und Präbiotika in der Ernährung.
Journal für Ernährungsmedizin.
1999;
1
22-29
- 43
Walker G E, Wilson E M, Powell D, Oh Y.
Butyrate a histone deacetylase inhibitor activates the human IGF binding protein-3
promoter in brest cancer cells: Molecular mechanism involves an Sp1/Sp3 multiprotein
complex.
Endocrinology.
2001;
142
3817-3827
- 44 Werk R. Differenzierungsatlas für die medizinische Mikrobiologie. Frankfurt; pmi-Verlag
1987
- 45 Werk R, Heinrich J. Mikrobiologie der Darmflora. in Vorbereitung
- 46
Zhu W G, Otterson G A.
The interaction of histon deacetylase inhibitors and DNA methyltransferase inhibitors
in the treatment of human cancer cells.
Current Medical Chemistry Anticancer Agents.
2003;
3
187-199
Korrespondenzadresse
Roland Werk
BABENDE Institut für
medizinische Mikrobiologie
Goethestr. 1
97072 Würzburg
Email: info@babende.de