Abstract
Various enantiomerically pure α-hydroxy esters were synthesized by asymmetric hydrogenation of α-keto esters catalyzed by Ru-Cn -Tunephos complex. Up to 97.1% ee has been achieved for both α-aryl and α-alkyl substituted α-keto esters.
Key words
asymmetric catalysis - enantioselectivity - ruthenium - hydrogenation - α-keto esters
References and Notes
1a
Hanessian S.
Total Synthesis of Natural Products: The Chiron Approach
Pergamon Press;
New York:
1983.
1b
Seuring B.
Seebach D.
Helv. Chim. Acta
1977,
60:
1175
1c
Mori K.
Takigawa T.
Matsuo T.
Tetrahedron
1979,
35:
933
2a
Watthey JWH.
Stanton JL.
Desai M.
Babiarz JE.
Finn BM.
J. Med. Chem.
1985,
28:
1511
2b Blaser HU, Jalett HP, and Sedelmeier GH. inventors; EP 0 206 993 A1.
2c
Yanagisawa H.
Ishihara S.
Ando A.
Kanazaki T.
Miyamoto S.
Koike H.
Iijima Y.
Oizumi K.
Matsushita Y.
Hata T.
J. Med. Chem.
1988,
31:
422
3a
Ogihara T.
Nakamaru M.
Higaki J.
Kumahara Y.
Hamano Y.
Minamino T.
Nakamura N.
Curr. Ther. Res.
1987,
41:
809
3b
Miyake A.
Itoh K.
Oka Y.
Chem. Pharm. Bull.
1986,
34:
2852
4a
Defreyn G.
Gachet C.
Savi P.
Driot F.
Cazenave JP.
Maffrand JP.
Thromb. Haemostasis
1991,
65:
186
4b
Rodgers JE.
Steinhubl SR.
Expert Rev. Cardiovasc. Ther.
2003,
1:
507
4c Castaldi G, Barreca G, and Bologna A. inventors; WO 2003093276 A1.
5a
Orito Y.
Imai S.
Niwa S.
Nippon Kagaku Kaishi
1979,
1118
5b
Orito Y.
Imai S.
Niwa S.
Nippon Kagaku Kaishi
1980,
670
5c
Orito Y.
Imai S.
Niwa S.
Nippon Kagaku Kaishi
1982,
137
5d
Blaser H.-U.
Jalett HP.
Wiehl J.
J. Mol. Catal.
1991,
68:
215
5e
Spindler F.
Pittelkow U.
Blaser H.-U.
Chirality
1991,
3:
370
5f
Blaser H.-U.
Jalett HP.
Spindler F.
J. Mol. Catal.
1996,
107:
85
5g
Blaser H.-U.
Müller M.
Stud. Surf. Sci. Catal.
1991,
59:
73
5h
Webb G.
Wells PB.
Catal. Today
1992,
12:
319
5i
Augustine RL.
Tanieylan SK.
Doyle LK.
Tetrahedron: Asymmetry
1993,
4:
1803
5j
Wang G.
Heinz T.
Pfaltz A.
Minder B.
Mallat T.
Baiker A.
J. Chem. Soc., Chem. Commun.
1994,
2047
5k
Minder P.
Schurch M.
Mallat T.
Baiker A.
Heinz T.
Pfaltz A.
J. Catal.
1996,
160:
261
6a
Tang W.
Zhang X.
Chem. Rev.
2003,
103:
3029 ; and references cited therein
6b
Mashima K.
Kusano K.
Sato N.
Matsumura Y.
Nozaki K.
Kumobayashi H.
Sayo N.
Hori Y.
Ishizaki T.
Akutagawa S.
Takaya H.
J. Org. Chem.
1994,
59:
3064
6c
Chiba T.
Miyashita A.
Nohira H.
Takaya H.
Tetrahedron Lett.
1993,
34:
2351
6d
Genet JP.
Pinel C.
Ratovelomanana-Vidal V.
Mallart S.
Pfister X.
Bischoff L.
Cano De Andrade MC.
Darses S.
Galopin C.
Laffitte JA.
Tetrahedron: Asymmetry
1994,
5:
675
6e
Benincori T.
Brenna E.
Sannicolo F.
Trimarco L.
Antognazza P.
Cesarotti E.
Demartin F.
Pilati T.
J. Org. Chem.
1996,
61:
6244
6f
Benincori T.
Cesarotti E.
Piccolo O.
Sannicolo F.
J. Org. Chem.
2000,
65:
2043
7
Noyori R.
Acc. Chem. Res.
1990,
23:
345
8a
Schmid R.
Broger EA.
Cereghtti M.
Crameri Y.
Foricher J.
Lalonde M.
Müller RK.
Scalone M.
Schoettel G.
Zutter U.
Pure Appl. Chem.
1996,
68:
131
8b
Schmid R.
Foricher J.
Cereghtti M.
Schonholzer P.
Helv. Chim. Acta
1991,
74:
370
8c
Schmid R.
Cereghtti M.
Heiser B.
Schonholzer P.
Hansen H.-J.
Helv. Chim. Acta
1988,
71:
897
9a
Pai C.-C.
Lin C.-W.
Lin C.-C.
Chen CC.
Chan ASC.
J. Am. Chem. Soc.
2000,
122:
11531
9b
Benincori T.
Brenna E.
Sannicolo F.
Trimarco L.
Antognazza P.
Cesarotti E.
Demartin F.
Pilati T.
J. Org. Chem.
1996,
61:
6244
9c
Saito T.
Yokozawa T.
Ishizaki T.
Moroi T.
Sayo N.
Miura T.
Kumobayashi H.
Adv. Synth. Catal.
2001,
343:
264
9d
Duprat de Paule S.
Jeulin S.
Ratovelomanana-Vidal V.
Genet JP.
Champion N.
Dellis P.
Eur. J. Org. Chem.
2003,
1931
9e
Pai C.-C.
Li Y.-M.
Zhou Z.-Y.
Chan ASC.
Tetrahedron Lett.
2002,
43:
2789
9f
Gelpke AES.
Kooijman H.
Spek AL.
Hiemstra H.
Chem. Eur. J.
1999,
5:
2472
9g
Qiu L.
Wu J.
Chan S.
Au-Yeung TT.-L.
Ji J.-X.
Guo R.
Pai C.-C.
Zhou Z.
Li X.
Fan Q.-H.
Chan ASC.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
5815
9h
Jeulin S.
Duprat de Paule S.
Ratovelomanana-Vidal V.
Genet JP.
Champion N.
Dellis P.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
5799
10a
Zhang Z.
Qian H.
Longmire J.
Zhang X.
J. Org. Chem.
2000,
65:
6223
10b
Kitamura M.
Tokunaga M.
Noyori R.
Org. Synth.
1993,
71:
1
11
Lei A.
Wu S.
He M.
Zhang X.
J. Am. Chem. Soc.
2004,
126:
1626
12
Kitamura M.
Tokunaga M.
Noyori R.
J. Org. Chem.
1992,
57:
4053
13
Noyori R.
Ohkuma T.
Kitamura M.
J. Am. Chem. Soc.
1987,
109:
5856
14a
Wu S.
Wang W.
Tang W.
Lin M.
Zhang X.
Org. Lett.
2002,
4:
4495
14b
Mashima K.
Nakanura T.
Matsuo Y.
Tani K.
J. Organomet. Chem.
2000,
1607:
51
15
General Procedure for the Asymmetric Hydrogenation of α-Keto Esters.
[Ru(cymene)Cl2 ]2 (6.2 mg, 0.01 mmol) and (S )-C3 -Tunephos (12.5 mg, 0.021 mmol) were dissolved in degassed DMF (3 mL) in a Schlenk tube under N2 . The solution was heated at 100 °C for 3.5 h. After the mixture was cooled to 50 °C, the solvent was removed under vacuum to give the catalysts as an orange-red solid. The catalyst was dissolved in degassed MeOH (8 mL) in a glovebox and distributed equally between four vials. Substrate 6a (82 mg, 0.5 mmol) was then added to the catalyst solution. The resulting mixture was transferred into an autoclave and charged with 5 atm pressure of H2 . The autoclave was stirred at r.t. for 20 h. The autoclave was then cooled to r.t. and the H2 was carefully released. The reaction solution was then evaporated and the residue was purified by column chromatography to give the corresponding hydrogenation product (76 mg, 92% yield). 1 H NMR (300 MHz, CDCl3 ): δ = 7.34-7.44 (m, 5 H), 5.18 (d, J = 3.5 Hz, 1 H), 3.76 (s, 3 H), 3.59 (d, J = 3.5 Hz, 1 H). 13 C NMR (75 MHz, CDCl3 ): δ = 174.5, 138.7, 129.0, 128.9, 127.0, 73.3, 53.4. [α]D
20 +180.5 (c 1.3, CHCl3 ) for 97.1% ee; Gamma Dex 225, 30 m × 0.25 mm, column temperature: 130 °C, carrier gas: He, 1 mL/min, t
1 = 19.000 min, t
2 = 21.593 min.