References and Notes
1
Mootoo DR.
Konradsson P.
Udodong U.
Fraser-Reid B.
J. Am. Chem. Soc.
1988,
110:
5583
2a
Zhang Z.
Ollman IR.
Ye X.-S.
Wischnat R.
Baasov T.
Wong C.-H.
J. Am. Chem. Soc.
1999,
121:
734
2b
Ye X.-S.
Wong C.-H.
J. Org. Chem.
2000,
65:
2410
2c
Burkhart F.
Zhang Z.
Wacowich-Sgarbi S.
Wong C.-H.
Angew. Chem. Int. Ed.
2001,
40:
1274
2d
Mong TK.-K.
Wong C.-H.
Angew. Chem. Int. Ed.
2002,
41:
4087
2e
Mong TK.-K.
Lee H.-K.
Durón SG.
Wong C.-H.
Proc. Natl. Acad. Sci. U.S.A.
2003,
100:
797
2f
Mong TK.-K.
Lee H.-K.
Durón SG.
Wong C.-H.
J. Org. Chem.
2003,
68:
2135
2g
Durón SG.
Polat T.
Wong C.-H.
Org. Lett.
2004,
6:
839
2h
Lee H.-K.
Scanlan CN.
Huang C.-Y.
Chang AY.
Calarese DA.
Dwek RA.
Rudd PM.
Burton DR.
Wilson IA.
Wong C.-H.
Angew. Chem. Int. Ed.
2004,
43:
1000
3a
Ley SV.
Priepke HWM.
Angew. Chem., Int. Ed. Engl.
1994,
33:
2292
3b
Douglas NL.
Ley SV.
Lücking U.
Warriner SL.
J. Chem. Soc., Perkin Trans. 1
1998,
51
3c
Fridman M.
Solomon D.
Yogev S.
Baasov T.
Org. Lett.
2002,
4:
281
3d
Wang Y.
Huang X.
Zhang L.-H.
Ye X.-S.
Org. Lett.
2004,
6:
4415
4a
Grice P.
Ley SV.
Pietuszka J.
Priepke HWM.
Walther EPE.
Synlett
1995,
781
4b
Cheung M.-K.
Douglas N.
Hinzen B.
Ley SV.
Pannecouncke X.
Synlett
1997,
257
4c
Grice P.
Ley SV.
Pietuszka J.
Osborn HMI.
Priepke HWM.
Warriner SL.
Chem. Eur. J.
1997,
3:
431
4d
Green L.
Hinzen B.
Ince SJ.
Langer P.
Ley SV.
Warriner SL.
Synlett
1998,
440
4e
Langer P.
Ince SJ.
Ley SV.
J. Chem. Soc., Perkin Trans. 1
1998,
3913
4f
Tanaka H.
Adachi M.
Tsukamoto H.
Ikeda T.
Yamada H.
Takahashi T.
Org. Lett.
2002,
4:
4213
4g
Hashihayata H.
Ikegai K.
Takeuchi K.
Jona H.
Mukaiyama T.
Bull. Chem. Soc. Jpn.
2003,
76:
1829
4h
Mukaiyama T.
Kobashi Y.
Chem. Lett.
2004,
33:
10
4i
Tanaka H.
Adachi M.
Takahashi T.
Tetrahedron Lett.
2004,
45:
1433
5
Huang X.
Huang H.
Wang H.
Ye X.-S.
Angew. Chem. Int. Ed.
2001,
40:
5221
6
Lahmann M.
Oscarson S.
Org. Lett.
2001,
3:
4201
7 For an excellent recent review: Codée JDC.
Litjens REJN.
van den Bos LJ.
Overkleeft HS.
van der Marel GA.
Chem. Soc. Rev.
2005,
34:
769
8
Yamada H.
Kato T.
Takahashi T.
Tetrahedron Lett.
1999,
40:
4581
9
Raghavan S.
Kahne D.
J. Am. Chem. Soc.
1993,
115:
1580
10
Codée JDC.
van den Bos LJ.
Litjens REJN.
Overkleeft HS.
van Boom JH.
van der Marel GA.
Org. Lett.
2003,
5:
1947
11
Schmidt RR.
Kinzy W.
Adv. Carbohydr. Chem. Biochem.
1994,
50:
21
12a
Qiu D.
Koganty RR.
Tetrahedron Lett.
1997,
38:
961
12b
Yu B.
Yu H.
Hui Y.
Han X.
Synlett
1999,
753
12c
Dowlut M.
Hall DG.
Hindsgaul O.
J. Org. Chem.
2005,
70:
9809
13a
Yamada H.
Harada T.
Takahashi T.
J. Am. Chem. Soc.
1994,
116:
7919
13b
Jayaprakash KN.
Fraser-Reid B.
Org. Lett.
2004,
6:
4211
14
Yu B.
Tao H.
Tetrahedron Lett.
2001,
42:
2405
15
Adinolfi M.
Barone G.
Iadonisi A.
Schiattarella M.
Tetrahedron Lett.
2002,
43:
5573
16 Adinolfi M, Iadonisi A, Ravidà A, and Schiattarella M. inventors; Communication at 13th European Carbohydrate Symposium, Bratislava, Slovakia, August 22-26, 2005, abstract OP 48 .
17
Sun J.
Han X.
Yu B.
Synlett
2005,
437
18 This compound was readily accessed by Zemplen deacetylation of the corresponding 1,6-di-O-acetylated precursor obtained as described in: Lam SN.
Gevay-Hague J.
Carbohydr. Res.
2002,
337:
1953
19
Procedure for the Synthesis of Glycosyl (
N
-Phenyl)tri-fluoroacetimidates from Diols.
(N-Phenyl)trifluoroacetimidoyl chloride (55 mL, 0.45 mmol) was added at r.t. to a mixture of 2,3,4-tri-O-benzyl-glucopyranose (100 mg, 0.22 mmol) and K2CO3 (37 mg, 0.26 mmol) in acetone (2 mL). After ca. 2 h, a few drops of pyridine were added and the mixture was filtered on a short pad of neutral alumina (eluent: CH2Cl2). The residue was chromatographed on neutral aluminum oxide I (eluent: PE-EtOAc from 85:15 to 7:3) to yield 5 (91 mg, yield 66%) as an oil. An analogous procedure was adopted for the synthesis of 8 (38% over two steps).
Spectroscopic data of 5 (β-anomer): 1H NMR (300 MHz, CDCl3): δ = 7.60-6.80 (aromatic protons), 5.75 (1 H, br s, H-1), 5.00-4.40 (benzyl CH2), 4.00-3.20 (6 H). 13C NMR (50 MHz, CDCl3): δ = 143.3, 138.3, 137.8, 137.6, 129.3-127.8, 126.2, 124.4, 120.6, 119.3, 97.0 (C-1), 84.3, 81.0, 76.7, 76.0, 75.6, 75.2, 75.1, 61.4.
Spectroscopic data of 8 (α-anomer): 1H NMR (300 MHz, CDCl3): δ = 7.50-6.80 (aromatic protons), 6.42 (1 H, br s, H-1), 4.95-4.55 (benzyl CH2), 4.08 (1 H, td, J
2,3 = 3.3 Hz, J
3,OH = J
3,4 = 9.3 Hz, H-3), 4.00-3.70 (5 H), 2.45 (d, 3-OH). 13C NMR (50 MHz, CDCl3): δ = 143.4, 138.1, 138.0, 137.1, 128.7-127.5, 124.4, 120.6, 119.4, 94.7 (C-1), 76.0, 75.6, 75.1, 73.8, 73.4, 72.8, 71.3, 68.6.
20
Procedure for the One-Pot Synthesis of 6.
Trichloroacetimidate 2 (38 mg, 56 mmol) and trifluoro-acetimidate 5 (25 mg, 40 mmol) were co-evaporated three times in anhyd toluene and then, after the addition of freshly activated acid-washed molecular sieves, dissolved in MeCN (0.5 mL). The mixture was cooled at -30 °C and then a solution of Yb(OTf)3 (0.7 mg, 1.2 mmol) in pivalonitrile (30 mL) was added. After consumption of the trichloro-acetimidate donor (1 h), a solution of acceptor 1 (13 mg, 56 mmol) in MeCN (0.9 mL) and a further aliquot of Yb(OTf)3 (1.6 mg, 2.8 mmol) in pivalonitrile (70 mL) were added and the mixture was allowed to warm spontaneously to r.t. A few drops of pyridine were added and the mixture was filtered on a short pad of silica gel. The residue was chromatographed on a silica gel column eluted with PE-EtOAc mixtures to yield trisaccharide 6 (27 mg, 55% yield) slightly contaminated by minor amounts of anomers.
Spectroscopic data of 6: 1H NMR (400 MHz, CDCl3): δ = 7.40-7.22 (aromatic protons), 5.75 (1 H, d, J
1,2 = 4.8 Hz, H-1 Gal), 5.10-4.40 (16 H), 4.43 and 4.41 (2 H, 2 × d, J
1,2 = 7.2 Hz, 2 × H-1 Glc), 4.28 (1 H, dd, J
2,3 = 2.4 Hz, H-2 Gal), 4.25-3.40 (15 H), 1.50, 1.38, 1.30, 1.22 (12 H, 4 × s, acetonides CH3). 13C NMR (50 MHz, CDCl3): δ = 138.7, 138.6, 138.5, 138.2, 128.3-127.7, 109.3, 108.5, 104.4, 104.0, 96.3, 84.8, 84.5, 81.8, 81.5, 78.0, 77.8, 77.3, 77.1, 76.5, 75.7, 75.6, 75.0, 74.8, 74.7, 74.6, 74.2, 73.5, 71.3, 70.7, 70.5, 70.0, 68.9, 68.6, 67.4, 26.1, 25.9, 25.0, 24.4.
21a
Young M.
Haavik S.
Paulsen BS.
Broker M.
Barnes RMR.
Carbohydr. Polym.
1996,
30:
243
21b
Young M.
Davies MJ.
Bailey D.
Gradwell MJ.
Paulsen BS.
Wold JK.
Broker M.
Barnes RMR.
Hounsell EF.
Glycoconjugate J.
1998,
15:
815
22
Ogawa T.
Yamamoto H.
Carbohydr. Res.
1985,
137:
79
23
Procedure for the One-Pot Synthesis of 7.
Trichloroacetimidate 9 (58 mg, 85 mmol) and trifluoro-acetimidate 8 (37 mg, 60 mmol) were coevaporated three times in anhyd toluene and then, after the addition of freshly activated acid washed molecular sieves, dissolved in 4:1 toluene-Et2O (0.5 mL). The mixture was cooled at
-10 °C and then a solution of Yb(OTf)3 (1.2 mg, 1.7 mmol) in dioxane (100 mL) was added. After consumption of the trichloroacetimidate donor (ca. 30 min), a solution of acceptor 10 (41 mg, 84 mmol) in 4:1 toluene-Et2O (1.2 mL) and a further aliquot of Yb(OTf)3 (2.8 mg, 4.0 mmol) in dioxane (230 mL) were added and the mixture was allowed to warm spontaneously to r.t. After ca. 3 h, a few drops of pyridine were added and the mixture was filtered on a short pad of silica gel. The residue was chromatographed on a silica gel column eluted with PE-EtOAc mixtures to yield trisaccharide 7 (34 mg, 40% yield) as an oil.
Spectroscopic data of 7: 1H NMR (400 MHz, CDCl3): δ = 7.40-6.90 (aromatic protons), 5.83 (1H, m, -CH2CH=CH2), 5.25-5.22 (2 H, H-1 and -CH2CH=CHtrans), 5.20 (1 H, d, J
1,2 = 1.2 Hz, H-1), 5.13 (1 H, br d, J
1,2 = 10.4 Hz,
-CH2CH=CHcis), 4.97 (1 H, d, J
1,2 = 1.2 Hz, H-1), 4.90-4.30 (20 H), 4.21 (1 H, dd, J
2,3 = 3.2 Hz, J
3,4 = 8.4 Hz, H-3), 4.15-3.55 (19 H). 13C NMR (50 MHz, CDCl3): δ = 138.9, 138.6, 138.5, 138.4, 138.3, 13.9, 128.3-127.0, 117.1, 99.5, 99.4, 98.2, 80.1, 79.9, 75.5, 75.3, 75.2, 75.0, 74.8, 73.3, 72.6, 72.3, 72.1, 71.8, 69.4, 68.9, 67.8.
24
Carpenter C.
Nepogodiev SA.
Eur. J. Org. Chem.
2005,
3286