Subscribe to RSS
DOI: 10.1055/s-2006-933106
Selective Monoalkylation of the Fulvene-type Enolates of 4-Alkylidenecyclopentenones
Publication History
Publication Date:
09 March 2006 (online)
Abstract
4-Alkylidenecyclopentenones were shown to be prone to polyalkylation because of their very easy enolization. They were selectively monoalkylated through the organozinc aided alkylation of their new fulvene-type enolates.
Key words
cyclopentenones - fulvene enolates - alkylations - organozinc - prostanoids
-
1a
Martin GJ.Rabiller C.Mabon G. Tetrahedron Lett. 1970, 10: 3131 -
1b
Martin GJ.Rabiller C.Mabon G. Tetrahedron 1972, 28: 4027 -
2a
Ahmar M.Antras F.Cazes B. Tetrahedron Lett. 1995, 36: 4417 -
2b
Antras F.Ahmar M.Cazes B. Tetrahedron Lett. 2001, 42: 8153 - 3
Hashmi ASK.Bats JW.Choi JH. Tetrahedron Lett. 1998, 39: 7491 - 4
Ballini R.Bosica G.Fiorini D.Gil MV.Petrini M. Org. Lett. 2001, 3: 1265 - 5
Corey EJ.Matsuda SPT.Nagata R.Cleaver MB. Tetrahedron Lett. 1988, 29: 2555 -
6a
Sakai K.Yamashita M.Shibat Y. Chem. Lett. 1986, 353 -
6b
Sakai K,Yamashita M,Shibata Y,Yamada K, andToida N. inventors; JP 85/44,618. ; Chem. Abstr. 1987, 106, 196119v - 7
Sakai K,Ogawa Y,Yamada K,Toida N, andNukano T. inventors; JP 86/131,891. ; Chem. Abstr. 1988, 109, 110151b - For recent reviews on the Pauson-Khand reaction, see:
-
8a
Schore NE. In Comprehensive Organometallic Chemistry II Vol. 12:Hegedus LS. Pergamon; Oxford: 1995. p.703 -
8b
Chung YK. Coord. Chem. Rev. 1999, 188: 297 -
8c
Brummond KM.Kent JL. Tetrahedron 2000, 56: 3263 -
8d
Sugihara T.Yamagushi M.Nishizawa M. Chem. Eur. J. 2001, 7: 1589 -
8e
Gibson SE.Stevenazzi A. Angew. Chem. Int. Ed. 2003, 42: 1800 -
8f
Boñaga LVR.Krafft ME. Tetrahedron 2004, 60: 9795 -
8g
Blanco-Urgoiti J.Añorbe L.Pérez-Serrano L.Dominguez G.Pérez-Castells J. Chem. Soc. Rev. 2004, 33: 32 -
8h
Laschat S.Becheanu A.Bell T.Baro A. Synlett 2005, 2547 -
9a
Ahmar M.Chabanis O.Gauthier J.Cazes B. Tetrahedron Lett. 1997, 38: 5277 -
9b
Antras F.Ahmar M.Cazes B. Tetrahedron Lett. 2001, 42: 8157 - 10 For a review dealing with the problem of polyalkylation of ketones, see:
Caine D. In Comprehensive Organic Synthesis Vol. 3:Trost BMT.Fleming I. Pergamon; Oxford: 1991. p.1 - 11
Neuenschwander M. In The Chemistry of Double-bonded Functional Groups Vol. 2:Patai S. J. Wiley; New York: 1989. p.1131 - 12
Antras F.Ahmar M.Cazes B. Tetrahedron Lett. 2002, 43: 5029 - 13
Ichikawa J.Fujiwara M.Miyazaki S.Ikemoto M.Okauchi T.Minami T. Org. Lett. 2001, 3: 2345 - 14
Morita Y.Suzuki M.Noyori R. J. Org. Chem. 1989, 54: 1785 -
16a
Krishnamurthy SJ. J. Org. Chem. 1981, 46: 4628 -
16b
Sturino CF.Doussot P.Paquette LA. Tetrahedron 1997, 53: 8913 -
16c
Guerrab Z.Daou B.Fkih-Tetouani S.Ahmar M.Cazes B. Tetrahedron Lett. 2003, 44: 5727
References and Notes
Typical Experimental Procedure (Table 2, Entry 4): 5-Benzyl-2,3-diethyl-4-isopropylidene-cyclopent-2-enone (
6ca).
To a stirred suspension of NaH (60% w/w in oil, 44 mg, 1.1 mmol) in DMF (2 mL) at 0 °C was added dropwise a solution of cyclopentenone 3c (178 mg, 1 mmol) in DMF (2 mL). After 10 min of stirring at this temperature, Me2Zn (2 M toluene solution, 500 µL, 1 mmol) was added slowly via syringe and the mixture was stirred for 10 min. Then, benzylbromide 5a (198 mg, 1.16 mmol) in a little DMF was added rapidly. The mixture was warmed to r.t. and stirred for 4.5 h. Then, the mixture was quenched with sat. aq NH4Cl, diluted with H2O and extracted with Et2O. The combined extracts were washed with brine, dried over anhyd MgSO4, filtered, and concentrated under vacuum. Purification of crude product by flash chromatography (silica gel,
PE-Et2O = 90:10) provided the starting cyclopentenone 3c (8 mg, 4%) and cyclopentenone 6ca (164 mg, 61%) as a yellow oil.
Compound 6ca: R
f
= 0.35 (PE-Et2O = 70:30). UV (EtOH): lmax (ε/dm3mol-1cm-1): 306 nm (11934). IR (thin film): n = 3080, 3060, 3020, 2960, 2920, 2870, 1685, 1580, 1490, 1450, 1380, 1360, 1285, 1245, 1190, 1130, 1110, 1080, 1060, 1050, 1045, 1030, 1020, 965, 920, 835, 820, 740, 700 cm-1. 1H NMR (300 MHz, CDCl3): d = 7.09-7.07 (m, 3 H, m- and p-Ar), 6.95-6.89 (m, 2 H, o-Ar), 3.17 (dd, A of ABM,
²
J
AB = 11.8 Hz,
³
J
AM = 3.6 Hz, 1 H, CH-Ph), 3.12 (poorly defined dd, M of ABM,
³
J
BM = 4.7 Hz,
³
J
AM = 3.6 Hz, 1 H, CO-CH), 3.03 (dd, B of ABM,
²
J
AB = 11.8 Hz,
³
J
BM = 4.7 Hz, 1 H, CH-Ph), 2.46 (partly masked dq, A′ of A′B′M′,
²
J
A
′
B
′ = 13.4 Hz,
³
J
A
′
M
′ = 7.6 Hz, 1 H, CHC=CCO), 2.40 (partly masked dq, B′ of A′B′M′,
²
J
A
′
B
′ = 13.4 Hz,
³
J
B
′
M
′ = 7.4 Hz, 1 H, CHC=CCO), 2.11 [dq, A′′ of A′′B ′′M′′,
²
J
A
′′
B
′′ = 13.4 Hz,
³
J
A
′′
M
′′ = 7.5 Hz, 1 H, CHC(=)CO], 2.02 (s, 3 H, =CCH3), 1.99 [non-visible dq, masked by the two singlets at d = 2.02 and 1.98 ppm, B′′ of A′′B′′M′′3, 1 H, CHC(=)CO], 1.98 (s, 3 H, =CCH3), 0.76 (t,
³
J = 7.5 Hz, 3 H), 0.72 (t,
³
J = 7.5 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 208.0 (C-1, C=O), 170.0 (C-3), 144.5 (C-2), 137.3 (Cq, Ar), 133.8 (C-4), 130.2 (2 C, o-Ar), 130.1 (CqMe2), 127.8 (2 C, m-Ar), 126.5 (1 C, p-Ar), 50.9 (C-5), 37.3 (CH2Ph), 25.7 (CqCH3), 22.4 (CH2), 21.6 (CqCH3), 16.5 (CH2), 13.7 (CH3), 13.6 (CH3). MS (ESI): m/z = 291 [M + Na+], 269 [M + H+]. HRMS (EI): m/z calcd for C19H24O [M+
]: 268.1827; found: 268.1825.