Subscribe to RSS
DOI: 10.1055/s-2006-933116
Enantioselective Radical Reactions: Formation of Chiral Quaternary Centers
Publication History
Publication Date:
09 March 2006 (online)
Abstract
A novel addition/trapping radical reaction to establish all-carbon chiral quaternary centers has been developed.
Key words
radical reactions - chiral Lewis acid - quaternary centers - conjugate additions - imides
- For reviews on quaternary centers see:
-
1a
Denissova I.Barriault L. Tetrahedron 2003, 59: 10105 -
1b
Christoffers J.Baro A. Angew. Chem. Int. Ed. 2003, 42: 1688 -
1c
Christoffers J.Mann A. Angew. Chem. Int. Ed. 2001, 40: 4591 -
1d
Corey EJ.Guzman-Perez A. Angew. Chem. Int. Ed. 1998, 37: 388 -
1e
Fuji K. Chem. Rev. 1993, 93: 2037 -
1f
Martin SF. Tetrahedron 1980, 36: 419 - 2
Radicals in Organic Synthesis
Vol. 1 and 2:
Renaud P.Sibi MP. Wiley-VCH; Weinheim: 2001. - 3 For a recent review see:
Patil K.Sibi MP. In Quaternary Stereocenters - Challenges for Organic Synthesis Christoffers J., Baro A., Wiley-VCH; Weinheim: 2005. p.287-313 -
4a
Sibi MP.Manyem S.Zimmerman J. Chem. Rev. 2003, 103: 3263 -
4b
Sibi MP.Porter NA. Acc. Chem. Res. 1999, 33: 163 -
4c
Sibi MP.Manyem S. Tetrahedron 2000, 56: 8033 -
4d
Parsons AF.Bar S. Chem. Soc. Rev. 2003, 251 -
5a
Murakata M.Jono T.Mizuno Y.Hoshino O. J. Am. Chem. Soc. 1997, 119: 11713 -
5b
Murakata M.Jono T.Hoshino O. Tetrahedron: Asymmetry 1998, 9: 2087 -
6a
Yang D.Gu S.Yan YL.Zhu NY.Cheung KK. J. Am. Chem. Soc. 2001, 123: 8612 -
6b
Yang D.Gu S.Yan YL.Zhao HW.Zhu NY. Angew. Chem. Int. Ed. 2002, 41: 3014 - Also see:
-
6c
Yang D.Gao Q.Lee O.-Y. Org. Lett. 2002, 4: 1239 -
6d
Lin H.-H.Chang W.-S.Luo S.-Y.Sha C.-K. Org. Lett. 2004, 6: 3289 -
6e
Yang D.Yan Y.-L.Law K.-L.Zhu N.-Y. Tetrahedron 2003, 59: 10465 -
6f
Yang D.Ye X.-Y.Gu S.Xu M. J. Am. Chem. Soc. 1999, 121: 5579 -
6g
Yang D.Ye X.-Y.Xu M. J. Org. Chem. 2000, 65: 2208 -
6h For formation of quaternary center by radical combination see:
Ellison ME.Ng D.Dang H.Garcia-Garibay MA. Org. Lett. 2003, 5: 2531 -
7a Imide:
Sibi MP.Petrovic G.Zimmerman J. J. Am. Chem. Soc. 2005, 127: 2390 -
7b Sultam:
Sibi MP.Sausker JB. J. Am. Chem. Soc. 2002, 124: 984 -
7c Oxazolidinones:
Sibi MP.Ji J.Wu JH.Gurtler S.Porter NA. J. Am. Chem. Soc. 1996, 118: 9800 -
7d Pyrrolidinones:
Sibi MP.He L. Org. Lett. 2004, 6: 1749 -
7e Chiral relay templates:
Sibi MP.Prabagaran N. Synlett 2004, 2421 -
7f Pyrazoles:
Sibi MP.Shay JJ.Ji J. Tetrahedron Lett. 1997, 38: 5955 -
8a
Sibi MP.Prabagaran N.Ghorpade SG.Jasperse CP. J. Am. Chem. Soc. 2003, 125: 11796 -
8b
Sibi MP.Petrovic G.Zimmerman J. J. Am. Chem. Soc. 2005, 127: 2390 -
8c For the use of imide templates in conjugate additions see:
Sammis GM.Jacobsen EN. J. Am. Chem. Soc. 2003, 125: 4442 ; and references cited therein. -
9a For addition/trapping experiments from our laboratory, see:
Sibi MP.Ji J. J. Org. Chem. 1996, 61: 6090 -
9b
Sibi MP.Chen J. J. Am. Chem. Soc. 2001, 123: 9472 -
9c
Sibi MP.Manyem S.Subramaniam R. Tetrahedron 2003, 59: 10575 - For examples of radical reactions where stereocenter α to a carbonyl is established, see:
-
10a
Stereochemistry of Radical Reactions
Curran DP.Porter NA.Giese B. VCH; Weinheim: 1995. -
10b
Durkin K.Liotta D.Rancourt J.Lavallée J.-F.Boisvert L.Guindon Y. J. Am. Chem. Soc. 1992, 114: 4912 -
10c
Guindon Y.Houde K.Prevost M.Cardinal-David B.Landry SR.Daoust B.Bencheqroun M.Guerin B. J. Am. Chem. Soc. 2001, 123: 8496 -
10d
Curran DP.Abraham AC. Tetrahedron 1993, 49: 4821 -
10e
Curran DP.Ramamoorthy PS. Tetrahedron 1993, 49: 4841 -
10f
Curran DP.Geib S.De Mello N. Tetrahedron 1999, 55: 5681 - For a reaction with tiglates see:
-
10g
Kopping B.Chatgilialoglu C.Zehnder M.Giese B. J. Org. Chem. 1992, 57: 3994 -
10h
Watanabe Y.Mase N.Furue R.Toru T. Tetrahedron Lett. 2001, 42: 2981 -
10i
Wu JH.Zhang G.Porter NA. Tetrahedron Lett. 1997, 38: 2067 -
10j
Wu JH.Radinov R.Porter NA. J. Am. Chem. Soc. 1995, 117: 11029 -
12a
Kanemasa S.Oderaotoshi Y.Yamamoto H.Tanaka J.Wada E.Curran DP. J. Org. Chem. 1997, 62: 6454 -
12b
Iserloh U.Curran DP.Kanemasa S. Tetrahedron: Asymmetry 1999, 10: 2417 -
12c
Iserloh U.Oderaotoshi Y.Kanemasa S.Curran DP. Org. Synth. 2003, 80: 46 -
13a
Sibi MP.Ji J. J. Org. Chem. 1997, 62: 3800 -
13b
Sibi MP.Shay JJ.Liu M.Jasperse CP. J. Am. Chem. Soc. 1998, 120: 6615 -
13c
Sibi MP.Ma Z.Jasperse CP. J. Am. Chem. Soc. 2005, 127: 5764 -
13d
Sibi MP.Itoh K.Jasperse CP. J. Am. Chem. Soc. 2004, 126: 5366 -
13e
Sibi MP.Stanley LM.Jasperse CP. J. Am. Chem. Soc. 2005, 127: 8276
References and Notes
The ethyl addition products were formed in minor amounts depending on the chiral Lewis acid and/or template employed for the reaction.
14
General Procedure for the Addition/Trapping Reaction
To a suspension of Lewis acid (0.2 mmol) in 1.5 mL of CH2Cl2 was added the chiral ligand (0.2 mmol) and stirred at r.t. for 2 h resulting in a clear solution. Substrate (0.2 mmol) in CH2Cl2 was added to above chiral Lewis acid and the reaction cooled to -78 °C and stirred for 1 h. The radical precursor (6 mmol) was added, followed by addition of allyltributyltin (0.62 mL, 2 mmol), Et3B (1 mL, 1 mmol) and 10 mL of O2. The reaction was allowed to reach r.t. over 12 h. The reaction mixture was diluted with CH2Cl2 (20 mL) and silica gel (4 g) was added. After removal of the solvent, the silica gel was washed with hexane (30 mL), followed by hexane-EtOAc (1:1, 30 mL). The hexane-EtOAc solution was concentrated to give the crude, which was purified by flash chromatography to give pure product. The enantio-meric purity was determined by chiral GC. Conditions for GC analyses: Supelco β-Dex 225 column, 30 m in length, 0.25 mm inner diameter, isotherm temperature program, and He as carrier gas (1 mL/min).
2-Isobutyl-2-methylpent-4-enoic Acid (2,2-Dimethyl-propionyl)amide (4)
Mp 67-68 °C; R
f
= 0.3 (hexane-EtOAc, 4:1); 70% ee (1 mL/min, T = 80 °C, t
R1 = 42 min, t
R2 = 43.6 min). IR (film): 1758, 1478, 1453 cm-1. 1H NMR (500 MHz, CDCl3): δ = 8.25 (br s, 1 H), 5.76 (m, 1 H), 5.15-5.10 (m, 2 H), 2.39 (dd, J = 14.0, 7.0 Hz, 1 H), 2.18 (dd, J = 14.5, 7.5 Hz, 1 H), 1.72 (m, 1 H), 1.62 (dd, J = 14.5, 7.0 Hz, 1 H), 1.41 (dd, J = 14.5, 5.5 Hz, 1 H), 1.24 (s, 9 H), 1.21 (s, 3 H), 0.92 (d, J = 6.5 Hz, 3 H), 0.87 (d, J = 6.5 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 175.0, 174.3, 133.1, 119.3, 48.5, 47.5, 44.7, 40.5, 27.1, 24.7, 24.5, 23.5, 21.3. HRMS: m/z calcd for C15H27NO2Na+: 276.1933; found: 276.1932.
2-(2,2-Dimethylpropyl)-2-methylpent-4-enoic Acid (2,2-Dimethylpropionyl)amide (18)
Mp 73-74 °C; R
f
= 0.33 (hexane-EtOAc, 4:1); 73% ee (1 mL/min, T = 75 °C, t
R1 = 91.3 min, t
R2 = 93.1 min). IR (film): 3054, 1758, 1478 cm-1. 1H NMR (500 MHz, CDCl3): δ = 8.29 (br s, 1 H), 5.73 (m, 1 H), 5.15-5.08 (m, 2 H), 2.39 (dd, J = 14.0, 6.5 Hz, 1 H), 2.13 (dd, J = 13.5, 8.0 Hz, 1 H), 1.87 (d, J = 14.5 Hz, 1 H), 1.45 (d, J = 15.0 Hz, 1 H), 1.29 (s, 3 H), 1.25 (s, 9 H), 0.96 (s, 9 H). 13C NMR (125 MHz, CDCl3): δ = 174.9, 174.3, 132.8, 119.5, 52.7, 47.9, 47.1, 40.5, 31.7, 31.2, 27.1, 21.7. HRMS: m/z calcd for C16H29NO2Na+: 290.2090; found: 290.2080.
2-Cyclohexylmethyl-2-methylpent-4-enoic Acid (2,2-Dimethyl-propionyl)amide (20)Mp 90-91 °C; R
f
= 0.33 (hexane-EtOAc, 4:1); 64% ee (1.6 mL/min, T = 123 °C, t
R1 = 46.3 min, t
R2 = 46.9 min). IR (film): 3054, 1758, 1479 cm-1. 1H NMR (400 MHz, CDCl3): δ = 8.24 (br s, 1 H), 5.75 (m, 1 H), 5.16-5.08 (m, 2 H), 2.38 (dd, J = 14.0, 6.8 Hz, 1 H), 2.18 (ddt, J
d = 14.0, 8.0 Hz, J
t = 1.2 Hz, 1 H), 1.69-1.56 (m, 7 H), 1.40-1.35 (m, 2 H), 1.25 (s, 9 H), 1.20 (s, 3 H), 1.18-1.06 (m, 2 H), 0.99-0.88 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 175.0, 174.3, 133.1, 119.2, 47.38, 47.35, 44.7, 35.1, 34.3, 34.2, 27.1, 26.31, 26.27, 26.1, 21.5. HRMS: m/z calcd for C18H31NO2Na+: 316.2246; found: 316.2256.