References and Notes 1 Present address: Glycoform Limited, Unit 44C, Milton Park, Abingdon, Oxon OX14 4RU, UK
2
Elsley DA.
MacLeod D.
Miller JA.
Quayle P.
Davies GM.
Tetrahedron Lett.
1992,
33:
409
3a
Mead KT.
Brewer BN.
Curr. Org. Chem.
2003,
7:
227
3b
Brimble MA.
Curr. Org. Chem.
2003,
7:
1461
For recent reviews, see:
4a
Nicolaou KC.
Bulger PC.
Sarlah D.
Angew. Chem. Int. Ed.
2005,
44:
4442
4b
Echavarren AM.
Angew. Chem. Int. Ed.
2005,
44:
3962
5
Conway JC.
Quayle P.
Regan AC.
Urch CJ.
Tetrahedron
2005,
61:
11910
6a
Stork G.
Zhao K.
Tetrahedron Lett.
1989,
30:
2173
6b For a recent application, see: Dias LC.
de Oliveira LG.
Vilcachagua JD.
Nigsch F.
J. Org. Chem.
2005,
70:
2225
7
Abas A.
Beddoes RL.
Conway JC.
Quayle P.
Urch CJ.
Synlett
1995,
1264
8a
Helliwell M.
Karim S.
Parmee ER.
Thomas EJ.
Org. Biomol. Chem.
2005,
3:
3636 ; and references cited therein
For pertinent reviews, see:
8b
Ikeda H.
Omura S.
Chem. Rev.
1997,
97:
2591
8c
Ley SV.
Armstrong A. In
Strategies and Tactics in Organic Synth esis Vol. 3
Lindberg T.
Academic Press;
London:
1991.
p.237
8d
Davies HG.
Green RH.
Chem. Soc. Rev.
1991,
20:
211
8e
Davies HG.
Green RH.
Chem. Soc. Rev.
1991,
20:
271
9 For a review, see: Ferrier RJ.
Zubkov OA.
Org. React.
2003,
62:
569
10 For related rearrangements, see: Paquette LA.
Kinney MJ.
Dullweber U.
J. Org. Chem.
1997,
62:
1713
For intermolecular etherification processes, see:
11a
Bolitt V.
Mioskowski C.
Le S.-G.
Falck JR.
J. Org. Chem.
1990,
55:
5812
11b
Jaunzems J.
Kashin D.
Schönberger A.
Kirschning A.
Eur. J. Org. Chem.
2004,
3435
11c
Lin H.-C.
Du W.-P.
Chang C.-C.
Lin C.-H.
Tetrahedron Lett.
2005,
46:
5071
11d For iodo-spiroketalization, see: Holston EB.
Roush WR.
Org. Lett.
2002,
4:
3719
12a This intermediate has been prepared previously, see: Sellès P.
Lett R.
Tetrahedron Lett.
2002,
43:
4621
12b For a synthesis of racemic 10 , see ref. 5b. Alcohol 14 has been prepared previously, see: Muñoz DM.
Passey SC.
Simpson TJ.
Willis CL.
Campbell JB.
Rosser R.
Aust. J. Chem.
2004,
57:
645
13a
Jarosz S.
Zamojski A.
Curr. Org. Chem.
2003,
7:
13
13b
Somsak L.
Chem. Rev.
2001,
101:
81
13c
Friesen RW.
Loo RW.
Sturino CF.
Can. J. Chem.
1994,
72:
1262
13d
Friesen RW.
Sturino CF.
J. Org. Chem.
1990,
55:
2572
13e
Dubois E.
Beau JM.
Tetrahedron Lett.
1990,
31:
5165
For carbonylative Stille reactions, see:
13f
Steunenberg P.
Jeanneret V.
Zhu Y.-H.
Vogel P.
Tetrahedron: Asymmetry
2005,
16:
337
13g
Dubbaka SR.
Steunenburg P.
Vogel P.
Synlett
2004,
1235
13h
Friesen RW.
Loo RW.
Sturino CF.
Can. J. Chem.
1994,
72:
1262
13i
Dubois E.
Beau JM.
Tetrahedron Lett.
1990,
31:
5165
13j For the Pd-catalyzed coupling reactions of glucal-derived indium reagents, see: Lehmann Y.
Awasthi S.
Minehan T.
Org. Lett.
2003,
5:
2405-2408
For Stille-type cross-coupling reactions of iodoglucals, see:
13k
Friesen RW.
Loo RW.
J. Org. Chem.
1991,
56:
4821
13l
Potuzak JS.
Tan DS.
Tetrahedron Lett.
2004,
45:
1797
14a See ref. 7 and: Koo B.
McDonald F.
Org. Lett.
2005,
7:
3621
14b
Dubois E.
Beau JM.
Carbohydr. Res.
1992,
228:
103
15
Newton RF.
Reynolds DP.
Finch MAW.
Kelly DA.
Roberts SM.
Tetrahedron Lett.
1979,
20:
3981
For reviews, see:
16a
Negishi E.-i.
Hu Q.
Huang Z.
Qian M.
Wang G.
Aldrichimica Acta
2005,
38:
71
16b
Negishi E.-i.
Zeng X.
Tan Z.
Mingxing Q.
Hu Q.
Huang Z. In
Metal-Catalyzed Cross-Coupling Reactions
2nd ed., Vol. 2:
de Meijere A.
Diederich F.
Wiley-VCH;
Weinheim:
2004.
p.815
For the use of Negishi cross-coupling reactions in related contexts, see:
16c
Boucard V.
Larrieu K.
Lubin-Germain N.
Uziel J.
Auge J.
Synlett
2003,
1834
16d
Holzapfel CW.
Portwig CM.
Heterocycles
1997,
45:
1433
16e
Casson S.
Kocienski P.
J. Chem. Soc., Perkin Trans. 1
1994,
1187
16f
Tius MA.
Gu X.-Q.
Gomez-Galeno J.
J. Am. Chem. Soc.
1990,
112:
8188
17 Confer: Boeckman RK.
Charette AB.
Asberom T.
Johnston BH.
J. Am. Chem. Soc.
1991,
113:
5337
18 As indicated by D2 O quenching experiments.
19
Representative Spectroscopic Data.
Compound 17 : IR (film): νmax = 3031, 2968, 2927, 1661, 1496, 1454, 1399, 1365, 1309, 1245, 1215, 1177, 1097, 1028, 989, 911, 851, 735, 698 cm-1 . 1 H NMR (300 MHz, C6 D6 ): δ = 1.16 (3 H, d, J = 7.5 Hz, Me), 1.64 (1 H, br d dt, J = 18.0, 3.5 Hz, 3-H), 1.75 (1 H, br d, J = 18.0 Hz, 3-H), 1.77 (1 H, t, J = 12.0 Hz, 11ax -H), 2.41 (1 H, dd, J = 12.5 Hz, 11eq -H), 3.84 (1 H, dd, J = 11.0, 2.0 Hz, CH
2
OBn), 3.90 (1 H, t, J = 9.0 Hz, 9-H), 3.95 (1 H, dd, J = 11.0, 5.0 Hz, CH
2
OBn), 4.09-4.18 (1 H, m, 2-H), 4.20-4.26 (1 H, ddd, J = 10.0, 5.0, 2.0 Hz, 8-H), 4.35-4.44 (1 H, m, 10-H), 4.45-5.20 (6 H, m, 3 × CH
2
Ph), 4.69-4.71 (2 H, m, 4-H, 5-H), 7.10-7.50 (15 H, m, Ar). 13 C NMR (75 MHz, C6 D6 ): δ = 21.13, 32.34, 40.62, 63.71, 70.12, 71.50, 72.56, 73.53, 75.08, 78.68, 78.97, 96.19, 127.44, 127.49, 127.54, 127.69, 127.89, 128.01, 128.33, 128.49, 129.94, 129.94, 139.28, 139.64, 139.73. MS (CI): m/z (%) 501 (20) [M + H]+ . HRMS: m/z calcd for C32 H37 O5 : 501.2641. Found: 501.2640. Mixture of 19 and 20 (19 :20 = 1.5:1): IR (film): νmax = 3030, 2918, 1657, 1606, 1579, 1496, 1477, 1454, 1395, 1365, 1259, 1209, 1098, 1001, 910, 736, 696 cm-1 . Compound 19 : 1 H NMR (300 MHz, CHCl3 ): δ = 1.28 (3 H, d, J = 7 Hz, Me), 2.07-2.20 (2 H, m, 2 × 3-H), 3.70 (1 H, d, J = 4.0 Hz, 11eq -H), 3.72-3.90 (4 H, m, 8-H, H-9, CH
2
OBn), 3.92-4.10 (1 H, m, 2-H), 4.44-5.00 (6 H, m, 3 × CH
2
Ph), 4.54 (1 H, dd, J = 10.0, 4.0 Hz, 10-H), 6.00-6.20 (1 H, m, 4-H), 6.68 (1 H, d, J = 10.0 Hz, 5-H), 7.10-7.60 (20 H, m, Ar). Compound 20 : 1 H NMR (300 MHz, CHCl3 ): δ = 1.32 (3 H, d J = 7.0 Hz), 2.07-2.20 (2 H, m, 3-H), 3.42 (1 H, d, J = 11.0 Hz, 11ax -H), 3.72-3.90 (4 H, m, H-8, H-9, CH
2
OBn), 3.92-4.10 (1 H, m, 2-H), 4.19 (1 H, dd J = 11.0, 9.0 Hz, 10-H), 4.44-5.00 (5 H, m, OCH
2
Ph), 5.15 (1 H, d, J = 10.0 Hz, OCH
2
Ph), 5.74 (1 H, d, J = 10.0 Hz, 5-H), 6.00-6.20 (1 H, m, 4-H). 13 C NMR (75 MHz, CHCl3 , mixture of 19 and 20 ): δ = 20.98, 21.01, 31.68, 32.03, 55.33, 64.23, 64.74, 68.95, 69.43, 71.33, 71.82, 72.27, 73.38, 73.48, 74.96, 75.07, 75.94, 76.45, 79.40, 79.92, 83.28, 97.75, 98.56, 126.59, 127.03, 127.38, 127.43, 127.49, 127.62, 127.69, 127.75, 127.90, 127.96, 128.19, 128.25, 128.32, 128.38, 128.45, 128.84, 129.00, 129.27, 129.61, 131.55, 131.75, 132.88, 133.54, 138.30, 138.41, 138.46, 138.62 ppm. MS (CI): m/z = 657 (57) [M + H]+ . HRMS: m/z calcd for C38 H40 O5
80 Se: 656.2041. Found: 656.2050. Compound 21 : IR (film): νmax = 3062, 3031, 2928, 1656, 1579, 1496, 1477, 1454, 1398, 1360, 1321, 1264, 1209, 1112, 1025, 910, 838, 785, 736, 697 cm-1 . 1 H NMR (300 MHz, CHCl3 ): δ = 1.37 (3 H, d, J = 7.5 Hz, Me), 2.10 (1 H, dt, J = 18, 3-H), 2.43 (1 H, ddd, J = 18.0, 5.0, 2.0 Hz, 3-H), 3.55 (1 H, d, J = 12 Hz, 11ax -H), 3.81 (5 H, m, 8-H, 9-H, 10-H, CH
2
OBn), 4.44 (1 H, m, 2-H), 4.56-5.07 (6 H, m, 3 × CH
2
Ph), 6.13 (1 H, d, J = 11.0 Hz, 4-H), 6.32 (1 H, dt, J = 11.0, 5.0 Hz, 5-H), 7.20-7.25 (20 H, m, Ar) ppm. 13 C NMR (75 MHz): δ = 21.71, 30.82, 57.39, 69.43, 69.87, 73.35, 73.42, 74.91, 75.44, 80.12, 83.58, 97.67, 123.47, 126.88, 127.52, 127.60, 127.82, 127.99, 128.15, 128,26, 128.34, 128.48, 128.72, 128.94, 131.13, 131.66, 133.13, 138.16, 138.30, 138.49 ppm. MS (CI): m/z (%) 657 (32) [M + H]+ . HRMS: m/z calcd for C38 H40 O5
80 Se: 656.2041. Found: 656.2042.
20 See: Deslongchamps P.
Stereoelectronic Effects in Organic Chemistry
Pergamon;
Oxford:
1983.
Chap. 2.
21 Confer ref. 22b.
22a
Jaurand G.
Beau J.-M.
Sinaӱ P.
J. Chem. Soc., Chem. Commun.
1981,
572
22b
Diez-Martin D.
Grice P.
Kolb HC.
Ley SV.
Madin A.
Tetrahedron Lett.
1990,
31:
3445
22c For related oxidative spirocyclization reactions, see: Potuzak JS.
Moilanen SB.
Tan DS.
J. Am Chem. Soc.
2005,
127:
13706
For an in-depth analysis, see:
23a
Roush WR.
Sebesta DP.
Bennett CE.
Tetrahedron
1997,
53:
8825
23b
Predojević J.
Vukićević MD.
Wurst K.
Onganania K.-H.
Laus G.
Vukićević RD.
Carbohydr. Res.
2004,
339:
37 ; for structural studies
For other approaches to the synthesis of ‘contra-thermodynamic’ spiroketals, see:
24a
Doubskӱ Zedník J.
Vašíčková S.
Koutek B.
Tetrahedron Lett.
2005,
46:
7923
24b
Paterson I.
Coster MJ.
Chen DY.-K.
Gibson KR.
Wallace DJ.
Org. Biomol. Chem.
2005,
2410
24c
Takaoka LR.
Buckmelter AJ.
LaCruz TE.
Rychnovsky SD.
J. Am. Chem. Soc.
2005,
127:
528
24d
Chen J.
Fletcher MT.
Kitching W.
Tetrahedron: Asymmetry
1995,
6:
967
25a
Milne JE.
Jarowicki K.
Kocienski PJ.
Alonso J.
Chem. Commun.
2002,
426
25b
Milne JE.
Kocienski PJ.
Synthesis
2003,
584
25c This route promises to provide access to substrates such as 3 with greater efficiency than observed using Beau’s methodology. Beau’s route (that used in this study, see ref. 14b) requires recycling of i in order to achieve the throughput required for preparative-scale reactions (Scheme 6).
Scheme 6