References and Notes
1a
Tsuge O.
Kanemasa S. In
Advances in Heterocyclic Chemistry
Vol. 45:
Katritzky AR.
Academic Press;
San Diego:
1989.
p.232
1b
Janasik T.
Bergman J. In
Progress in Heterocyclic Chemistry
Vol. 15:
Gribble GW.
Jaule JA.
Pergamon;
Amsterdam:
2003.
p.140
2a
Pearson WH. In
Studies in Natural Products Chemistry
Vol. 1:
.
Elsevier;
New York:
1998.
p.323
2b
Grigg R.
Chem. Soc. Rev.
1987,
16:
89
2c
Lawin JW. In
1,3-Dipolar Cycloaddition Chemistry
Vol. 1:
Padwa A.
J. Wiley and Sons;
New York:
1984.
p.653
3a
Jorgensen KA.
Gothelf KV.
Chem. Rev.
1998,
98:
863
3b
Gothelf KV. In Cycloaddition Reaction in Organic Synthesis
Kobayashi S.
Jorgensen KV.
Wiley-VCH;
Weinheim:
2001.
Chap. 6.
3c
Najera C.
Sansano JM.
Angew. Chem. Int. Ed.
2005,
44:
6272
4a
Synthetic Application of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products
Padwa A.
Pearson W.
Wiley-VCH;
Weinheim:
2002.
p.169
4b
Kanemasa S.
Synlett
2002,
1371
4c
Longmire JM.
Wang B.
Zhang X.
J. Am. Chem. Soc.
2002,
124:
13400
4d
Chen C.
Xiaodong L.
Schreiber S.
J. Am. Chem. Soc.
2003,
125:
10174
4e
Nyerges M.
Bendell D.
Arony A.
Hibbs DE.
Coles SJ.
Hursthouse MB.
Synlett
2003,
947
5a
Enantiocontrolled Synthesis of Fluoro-Organic Compounds. Stereochemical Challenges and Biomedicinal Targets
Soloshonok VA.
John Wiley and Sons, Inc.;
New York:
1999.
5b
Asymmetric Fluoroorganic Chemistry
Ramachandran PV.
ACS Symposium Series;
Washington, DC:
2000.
5c
Smart BE.
Chemistry of Organic Fluorine Compound: A Critical Review
Hudlicky M.
Pavlath AE.
ACS Monograph 187, American Chemical Society;
Washington, DC:
1995.
p.979
5d
Smart BE.
Organofluorine Chemistry: Principles and Commercial Applications
Banks RE.
Smart BE.
Tatlow JC.
Plenum Publishing Corporation;
New York:
1994.
p.57
5e
Myers AG.
Barbay JK.
Zhong B.
J. Am. Chem. Soc.
2001,
123:
7207
6
Hodges JA.
Reines RT.
J. Am. Chem. Soc.
2003,
125:
9262
7a Paolella DN, Gruskin EA, and Buechter DD. inventors; PCT Int. Appl. WO 2000015789.
7b Fukui H, Shibata T, Nakano J, Naita T, Senda N, Maejima T, Watanuki Y, and Aryoshi T. inventors; JP 07300471.
8
Bernardi L.
Bonini BF.
Comes-Franchini M.
Fochi M.
Folegatti M.
Grilli S.
Mazzanti A.
Ricci A.
Tetrahedron: Asymmetry
2004,
15:
245
9
McElroy KT.
Purrington S.
Bumgardner CL.
Burgess JP.
J. Fluorine Chem.
1999,
95:
117
10 A solution of BocNHglycine (3.5 g, 20.2 mmol) in 50 mL of CH2Cl2 was cooled to 0 °C. N,N-dicyclohexylcarbodiimide (4.18 g, 20.2 mmol) was added in several portions and a white precipitate formed quickly. After 10 min, l-menthol was added (3.78 g, 24.2 mmol) in 60 mL of CH2Cl2 and DMAP (110 g, 0.9 mmol). The mixture was stirred at r.t. for 24 h. After addition of H2O (15 mL), the organic phase was extracted with Et2O and dried over MgSO4. The residue was purified on column chromatography on silica gel (PE-Et2O, 2:1) to afford the l-menthol ester (5.4 g, 86%) as a yellow oil. [α]D
20 -46.5 (c 0.99, MeOH). 1H NMR (400 MHz, CDCl3): δ = 5.06 (s, 1 H), 4.70 (dt, 1 H, J = 12.3, 6.1 Hz), 3.83 (d, 2 H, J = 4.2 Hz), 1.98-1.90 (m, 1 H), 1.85-1.73 (m, 1 H), 1.67-1.59 (m, 2 H), 1.40 (s, 9 H), 1.37-1.29 (m, 1 H), 1.07-0.76 (m, 4 H), 0.85 (d, 3 H, J = 7.3 Hz), 0.84 (d, 3 H, J = 7.3 Hz), 0.70 (d, 3 H, J = 6.6 Hz). 13C NMR (75.3 MHz, CDCl3): δ = 169.7, 155.4, 79.2, 75.4, 46.8, 42.5, 40.7, 34.0, 31.3, 28.2, 26.1, 23.3, 21.9, 20.6, 16.2. MS (EI): m/e = 313 [M+]. Standard procedures for the removal of the Boc were followed giving (1R,2S,5S)-2 as a yellow oil. [α]D
20 -77.3 (c 0.50, MeOH). 1H NMR (300 MHz, CDCl3): δ = 4.60 (dt, 1 H, J = 12.2, 6.1 Hz), 3.32 (s, 2 H), 2.28 (s, 2 H), 1.92-0.60 (18H). 13C NMR (75.3 MHz, CDCl3): δ = 173.1, 74.3, 46.6, 43.3, 40.4, 33.8, 30.9, 25.8, 23.0, 21.5, 20.3, 15.9. MS (EI): m/e = 213 [M+].
11 For the condensation see ref. 4c and 4d. Starting from (1R,2S,5S)-2 (860 mg, 4.0 mmol), Na2SO4 (3.2 g, 22.8 mmol) and PhCHO (0.4 mL, 4.0 mmol), 1.03 g (86%) of (1R,2S,5S)-3a as a yellow oil were obtained. [α]D
20 -54.0 (c 0.16, CH2Cl2). 1H NMR (300 MHz, CDCl3): δ = 8.17 (s, 1 H), 7.67-7.63 (m, 2 H), 7.32-7.26 (m, 3 H), 4.66 (dt, 1 H, J = 4.0, 11.3 Hz), 4.26 (s, 2 H), 1.93 (d, 1 H, J = 11.8 Hz), 1.84-1.73 (m, 1 H), 1.61-1.50 (m, 2 H), 1.44-1.24 (m, 2 H), 1.00-0.81 (m, 3 H), 0.77 (d, 6 H, J = 5.5 Hz), 0.64 (d, 3 H, J = 7.3 Hz). 13C NMR (100.6 MHz, CDCl3): δ = 169.4, 164.9, 136.4, 128.7, 128.6, 128.5, 74.6, 62.4, 47.3, 41.2, 34.4, 31.4, 26.6, 23.8, 22.1, 20.8, 16.6. MS (ESI): m/z = 324 [M+ + Na]. Starting from (1R,2S,5S)-2 (1.67 g, 7.8 mmol), Na2SO4 (6.34 g, 44.6 mmol) and 4-CNC6H4CHO (1.03g, 7.8 mmol), 2.28 g (90%) of (1R,2S,5S)-3b as a yellow oil were obtained. [α]D
20 -42.4 (c 0.50, CH2Cl2). 1H NMR (300 MHz, CDCl3): δ = 8.33 (s, 1 H), 7.89 (d, 2 H, J = 8.6 Hz), 7.72 (d, 2 H, J = 8.6 Hz), 4.87 (dt, 1 H, J = 11.0, 4.3 Hz), 4.43 (s, 2 H), 2.09-0.70 (m, 18 H). 13C NMR (100.6 MHz, C6D6): δ = 168.9, 163.1, 139.5, 132.5, 132.2, 129.4, 128.7, 118.4, 114.5, 75.0, 62.2, 47.3, 41.2, 34.3, 31.4, 26.7, 23.8, 22.1, 20.8, 16.6. MS (ESI): m/z = 349 [M+ + Na].
12 According to ref. 4c and 4d. Starting from 1 (212 mg, 1.8 mmol) and 3a (541 mg, 1.8 mmol), 565 mg (75%) of 4a,a′ were obtained as mixture after column chromatography on silica with CH2Cl2-EtOAc 200:1. After column chromatography the two cycloadducts were subjected to semi-preparative HPLC separation. HPLC (hexane-i-PrOH gradient starting from 0.5% i-PrOH, to 11 min, then 1.05% i-PrOH to 25 min, then 2.25% i-PrOH).
Selected data for 4a,a′.
l-Menthol-(2S,3R,4R,5S)-4a: elution time 9.00 min; yellow oil; [α]D
20 -60.5 (c 0.55, MeOH). 1H NMR (600 MHz, C6D6): δ = 7.22-7.19 (m, 1 H), 7.02-6.95 (m, 4 H), 5.77 (ddd, 1 H, J
HF
= 53.1 Hz, J = 3.1, 1.6 Hz), 4.99 (dt, 1 H, J = 11.1, 4.6 Hz), 4.62 (d, 1 H, J = 7.4 Hz), 4.21 (dd, 1 H, J
HF
= 28.6 Hz, J = 3.1 Hz), 3.46 (dd, 1 H, J = 10.5, 7.3 Hz), 3.44 (dd, 1 H, J = 10.5, 7.3 Hz), 3.27 (ddd, 1 H, J
HF
= 20.1 Hz, J = 7.2, 1.6 Hz), 3.11 (s, 1 H), 2.16-2.06 (m, 1 H), 1.47-1.34 (m, 3 H), 1.21-1.08 (m, 1 H), 0.99-0.60 (m, 3 H), 0.90 (d, 3 H, J = 7.6 Hz), 0.87 (d, 3 H, J = 7.6 Hz), 0.75 (d, 3 H, J = 7.1 Hz), 0.48 (t, 3 H, J = 7.6 Hz). 13C NMR (150 MHz, C6D6): δ = 169.7 (d, J
CF
= 9.6 Hz), 169.4 (d, J
CF
= 14.0 Hz), 137.9, 128.0-127.4, 126.9, 98.3 (d, J
CF
= 187.6 Hz), 75.5, 68.1 (d, J
CF
= 24.6 Hz), 64.5, 60.0, 56.1 (d, J
CF
= 22.2 Hz), 46.9, 40.6, 34.0, 31.1, 26.2, 23.1, 21.8, 20.7, 16.0, 13.2. 19F NMR (376 MHz, C6D6): δ = -173.77 (ddd, J
FH
= 51.9, 28.9, 21.0 Hz). MS (ESI): m/z = 419 [M+].
l-Menthol-(2R,3S,4S,5R)-4a′: elution time 9.30 min; yellow oil; [α]D
20 -27.1 (c 0.75, MeOH). 1H NMR (600 MHz, C6D6): δ = 7.23-7.21 (m, 1 H), 7.04-6.95 (m, 4 H), 5.71 (ddd, 1 H, J
HF
= 52.8 Hz, J = 2.7, 1.6 Hz), 5.02 (dt, 1 H, J = 10.9, 4.8 Hz), 4.63 (d, 1 H, J = 6.8 Hz), 4.20 (dd, 1 H, J
HF
= 28.7 Hz, J = 2.7 Hz), 3.45 (q, 2 H, J = 7.3 Hz), 3.27 (ddd, 1 H, J
HF
= 20.1 Hz, J = 7.1, 1.5 Hz), 3.08 (s, 1 H), 2.18-2.13 (m, 1 H), 2.06-2.00 (m, 1 H), 1.48-0.58 (m, 7 H), 0.85 (d, 6 H, J = 7.0 Hz), 0.74 (d, 3 H, J = 6.5 Hz), 0.47 (t, 3 H, J = 7.6 Hz). 13C NMR (150 MHz, C6D6): δ = 169.9 (d, J
CF
= 9.3 Hz), 169.4 (d, J
CF
= 12.3 Hz), 137.9, 128.0-127.4, 126.8, 98.4 (d, J
CF
= 186.5 Hz), 75.3, 67.8 (d, J
CF
= 25.9 Hz), 64.5, 60.0, 56.5 (d, J
CF
= 24.2 Hz), 47.0, 40.7, 34.1, 31.2, 26.4, 23.4, 21.8, 20.6, 16.4, 13.2. 19F NMR (376 MHz, C6D6): δ = -173.95 (ddd, J
FH
= 48.9, 28.9, 19.9 Hz). MS (ESI): m/z = 419 [M+].
13a
Stonehouse J.
Adell P.
Keeler J.
Shaka AJ.
J. Am. Chem. Soc.
1994,
116:
6037
13b
Stott K.
Stonehouse J.
Keeler J.
Hwang TL.
Shaka AJ.
J. Am. Chem. Soc.
1995,
117:
4199
13c
Stott K.
Keeler J.
Van Q N.
Shaka AJ.
J. Magn. Reson.
1997,
125:
302
13d
Van Q N.
Smith EM.
Shaka AJ.
J. Magn. Reson.
1999,
141:
191
14 In the case of 5a, on selective saturation of the H3 signal NOE effects were observed only on H2 and H4 (relative distance from H3: 1.07:1.00), while saturation of H4 showed NOE effects on H5 and H3 (relative distance from H4: 1.00:1.14). Saturation of H5 revealed strong NOE effects on H2 and H4 and a very small effect on H3 (relative distance from H5: 1.00:1.13:ca. 1.8); finally, saturation of H2 revealed strong NOE effects on H3 and H5 and a not negligible effect on H4 (relative distance from H2: 1.09:1.00:1.33). These data imply a trans relationship between H2 and H3, a trans relationship between H3 and H4, and a cis relationship between H4 and H5. This concatenation (trans-trans-cis) corresponds to the 2R*,3S*,4S*,5R* configuration. Analogous data were obtained for 5a′, 4a and 4a′.
15 MMFF force field as implemented in Titan 1.0.5, Wavefunction, Inc. The standard conformational search was applied to 5a and 5a′, and the structures within 3 kcal/mol above the global minima were analyzed for the determination of the distances between the pyrrolidine hydrogens and the menthol hydrogens. In Figure
[1]
are reported the two global energy minima.
16a According to: Nyerges M.
Bendell D.
Arany A.
Hibbs DE.
Coles SJ.
Hursthouse MB.
Groundwater PW.
Meth-Cohn O.
Synlett
2003,
947
16b Selected data for 7a,a′. Starting from 5a (130 mg, 0.29 mmol) 44.3 mg (50%) of (2S,3R,4R,5S)-7a were obtained as a colorless oil; [α]D
20 17.3 (c 0.2, MeOH). 1H NMR (600 MHz, C6D6): δ = 7.32-7.28 (m, 2 H), 7.12-7.06 (m, 2 H), 5.71 (dd, 1 H, J = 52.0, 3.5 Hz), 4.50 (d, 1 H, J = 7.1 Hz), 4.15 (dd, 1 H, J = 27.9, 3.6 Hz), 3.45 and 3.40 (2 s, 6 H), 3.30 (dd, 1 H, J = 20.5, 7.0 Hz), 2.90 (s, 1 H, NH). 13C NMR (150 MHz, C6D6): δ = 171.4 (d, J = 9.6 Hz), 170.6 (d, J = 11.5 Hz), 138.8, 128.7, 128.6, 127.1, 127.0, 117.2, 98.8 (d, J = 187.4 Hz), 67.5 (d, J = 26.2 Hz), 65.0, 64.6, 56.3 (d, J = 22.4 Hz), 52.6. 19F NMR (376 MHz, C6D6): δ = -174.00 (ddd, J
FH
= 51.0, 28.0, 20.7 Hz). MS (ESI): m/z = 306 [M+]. Starting from 5a′ the same procedure gave (2R,3S,4S,5R)-7a′ in 52% yield; [α]D -17.8 (c 0.2, MeOH).
17a
Singh RP.
Schreeve JM.
J. Fluorine Chem.
2002,
116:
23
17b
Singh RP.
Schreeve JM.
Synthesis
2002,
2561