Subscribe to RSS
DOI: 10.1055/s-2006-933135
Regioselective and Versatile Synthesis of Indoles via Intramolecular Friedel-Crafts Heteroannulation of Enaminones
Publication History
Publication Date:
09 March 2006 (online)
Abstract
A new approach is described for the synthesis of substituted indoles 5, through an intramolecular and regioselective Friedel-Crafts cyclization of enaminones 6a-h catalyzed by Lewis acids. Compounds 6 were prepared from the 2-anilinocarbonyl compounds 7, by treatment with DMFDMA under thermal or microwave (MW) irradiation conditions. An alternative and shorter one-pot two-step synthesis of indoles 5 was achieved starting from compounds 7 and promoted by MW radiation, including the elusive 2-acetylindoles 5i-m.
Key words
indoles - enaminones - Friedel-Crafts annulations - Lewis acid catalysis - microwaves
-
1a
Greenhill JV. Chem. Soc. Rev. 1977, 6: 277 -
1b
Lue P.Greenhill JV. Adv. Heterocycl. Chem. 1996, 67: 207 -
1c
Elassar A.-ZA.El-Khair AA. Tetrahedron 2003, 59: 8463 -
2a
Selic L.Grdadolnik SG.Stanovnik B. Helv. Chim. Acta 1997, 80: 2418 -
2b
Smodis J.Stanovnik B. Tetrahedron 1998, 54: 9799 -
2c
Stanovnik B.Svete J. Synlett 2000, 1077 - 3
Cruz MC.Tamariz J. Tetrahedron Lett. 2004, 45: 2377 - 4
Cruz MC.Tamariz J. Tetrahedron 2005, 61: 10061 -
5a
Gribble GW. Pyrroles and their Benzo Derivatives: Applications, In Comprehensive Heterocyclic Chemistry Vol. 2:Katritzky AR.Rees CW.Scriven EFV. Elsevier; Oxford: 1996. p.207-257 -
5b
Sundberg RJ. Indoles Academic Press; St. Louis: 1996. -
5c
Joule JA. Indoles, In Science of Synthesis Vol. 10:Thomas EJ. Thieme; Stuttgart: 2000. Chap. 13. -
6a
Saxton JE. The Monoterpenoid Indole Alkaloids, In Indoles Part 4: Wiley-Interscience; New York: 1983. -
6b
Abreu P.Pereira A. Heterocycles 1998, 48: 885 -
6c
Faulkner DJ. Nat. Prod. Rep. 1999, 16: 155 -
6d
Lousnasmaa M.Tolvanen A. Nat. Prod. Rep. 2000, 17: 175 -
6e
Steele JCP.Veitch NC.Kite GC.Simmonds MSJ.Warhurst DC. J. Nat. Prod. 2002, 65: 85 -
6f
Grougnet R.Magiatis P.Fokialakis N.Mitaku S.Skaltsounis A.-L.Tillequin F.Sévenet T.Litaudon M. J. Nat. Prod. 2005, 68: 1083 -
7a
Bunker AM.Edmunds JJ.Berryman KA.Walker DM.Flynn MA.Welch KM.Doherty AM. Bioorg. Med. Chem. Lett. 1996, 6: 1061 -
7b
Sechi M.Derudas M.Dallachio R.Dessi A.Bacchi A.Sannia L.Carta F.Palomba M.Ragab O.Chan C.Shoemaker R.Sei S.Dayam R.Neamati N. J. Med. Chem. 2004, 47: 5298 -
7c
Heinrich T.Böttcher H. Bioorg. Med. Chem. Lett. 2004, 14: 2681 -
7d
Riendeau D.Aspiotis R.Ethier D.Gareau Y.Grimm EL.Guay J.Guiral S.Juteau H.Mancini JA.Méthot N.Rubin J.Friesen RW. Bioorg. Med. Chem. Lett. 2005, 15: 3352 -
7e
Yates AS.Doughty SW.Kendall DA.Kellam B. Bioorg. Med. Chem. Lett. 2005, 15: 3758 -
8a
Black DStC. Pyrroles and their Benzo Derivatives: Reactivity, In Comprehensive Heterocyclic Chemistry Vol. 2:Katritzky AR.Rees CW.Scriven EFV. Elsevier; Oxford: 1996. p.39-117 -
8b
Zhang H.Larock RC. J. Org. Chem. 2002, 67: 9318 -
8c
Zhang H.Larock RC. Org. Lett. 2002, 4: 3035 -
8d
Wynne JH.Stalick WM. J. Org. Chem. 2003, 68: 4845 -
8e
Agnusdei M.Bandini M.Melloni A.Umani-Ronchi A. J. Org. Chem. 2003, 68: 7126 -
8f
Duval E.Cuny GD. Tetrahedron Lett. 2004, 45: 5411 - For recent examples, see:
-
9a
Gribble GW. J. Chem. Soc., Perkin Trans. 1 2000, 1045 -
9b
Scott TL.Söderberg BCG. Tetrahedron Lett. 2002, 43: 1621 -
9c
Witulski B.Alayrac C.Tevzadze-Saeftel L. Angew. Chem. Int. Ed. 2003, 42: 4257 -
9d
Walkington A.Gray M.Hossner F.Kitteringham J.Voyle M. Synth. Commun. 2003, 33: 2229 -
9e
Yue D.Larock RC. Org. Lett. 2004, 6: 1037 -
9f
Shen M.Li G.Lu BZ.Hossain A.Roschangar F.Farina V.Senanayake CH. Org. Lett. 2004, 6: 4129 -
9g
Nazaré M.Schneider C.Lindenschmidt A.Will DW. Angew. Chem. Int. Ed. 2004, 43: 4526 -
9h
Siu J.Baxendale IR.Ley SV. Org. Biomol. Chem. 2004, 2: 160 -
9i
Amjad M.Knight DW. Tetrahedron Lett. 2004, 45: 539 -
9j
Ackermann L.Born R. Tetrahedron Lett. 2004, 45: 9541 -
9k
Arcadi A.Bianchi G.Marinelli F. Synthesis 2004, 610 -
9l
Hiroya K.Itoh S.Sakamoto T. J. Org. Chem. 2004, 69: 1126 -
9m
Cacchi S.Fabrizi G. Chem. Rev. 2005, 105: 2873 -
9n
Barluenga J.Vázquez-Villa H.Ballesteros A.González JM. Adv. Synth. Catal. 2005, 347: 526 -
9o
Söderberg BCG.Hubbard JW.Rector SR.O’Neil SN. Tetrahedron 2005, 61: 3637 -
9p
Ackermann L. Org. Lett. 2005, 7: 439 -
9q
Arcadi A.Cacchi S.Fabrizi G.Marinelli F.Parisi LM. J. Org. Chem. 2005, 70: 6213 -
14a
Jiménez-Vázquez HA.Ochoa ME.Zepeda G.Modelli A.Jones D.Mendoza JA.Tamariz J. J. Phys. Chem. A 1997, 101: 10082 -
14b
Herrera R.Jiménez-Vázquez HA.Modelli A.Jones D.Söderberg BC.Tamariz J. Eur. J. Org. Chem. 2001, 4657 -
14c
Mendoza JA.Jiménez-Vázquez HA.Herrera R.Liu J.Tamariz J. Rev. Soc. Quím. Méx. 2003, 47: 108 - 15
Reddy MS.Cook JM. Tetrahedron Lett. 1994, 35: 5413 - 16
Ellis F,Naylor A,Wallis CJ, andWaterhouse I. inventors; EP 388,165. ; Chem. Abstr. 1991, 114, 81891 - 17
Knittel D. Synthesis 1985, 186
References and Notes
Typical Procedure for Preparation of 7b.
Under an N2 atmosphere, a mixture of 8b (1.0 g, 9.33 mmol) and anhyd K2CO3 (1.93 g, 14.0 mmol) in dry acetone (10 mL) was heated to 60 °C for 1 h. Methyl bromoacetate (9, 1.57 g, 10.26 mmol) was added dropwise and the mixture was stirred at 60 °C for 12 h. The mixture was filtered and the solvent was removed under vacuum. The residue was purified by column chromatography over silica gel (20 g/g of sample, hexane-EtOAc, 95:5), to give 1.44 g (86%) of 7b as a brownish solid.
R
f
= 0.45 (hexane-EtOAc, 8:2); mp 44-45 °C (hexane-EtOAc, 8:2) [lit.
[16]
40 °C]. IR (KBr): 3393, 1741, 1608, 1513, 1439, 1213, 1180, 772 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.33 (s, 3 H, CH3Ar), 3.81 (s, 3 H, CO2Me), 3.93 (s, 2 H, CH2N), 4.24 (br s, 1 H, NH), 6.43-6.49 (m, 2 H, H-2, H-6), 6.63 (br d, J = 7.5 Hz, 1 H, H-4), 7.13 (t, J = 7.5 Hz, 1 H, H-5). 13C NMR (75.4 MHz, CDCl3): δ = 21.4 (CH3Ar), 45.4 (CH2N), 51.9 (CO2
CH3), 109.8 (C-6), 113.6 (C-2), 118.9 (C-4), 129.0 (C-5), 138.8 (C-3), 146.8 (C-1), 171.5 (CO2Me). MS (70 eV): m/z (%) = 179 (65) [M+], 136 (7), 122 (34), 121 (100), 93 (3), 63 (5).
Typical Procedure for Preparation of 6b.
A mixture of 7b (0.20 g, 1.12 mmol) and DMFDMA (0.20 g, 1.68 mmol) was heated to 90 °C for 5 h, under an N2 atmosphere. The crude mixture was evaporated under vacuum and the residue was purified by column chromatography over silica gel (20 g/g of sample, hexane-EtOAc, 8:2), to give 0.21 g (79%) of 6b as an orange solid.
R
f
= 0.25 (hexane-EtOAc, 8:2); mp 65-72 °C (decomp., hexane-EtOAc, 8:2). IR (KBr): 3318, 3025, 1735, 1645, 1607, 1488, 1435, 1227, 777 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.26 (s, 3 H, CH3Ar), 3.02 [s, 6 H, N(CH3)2], 3.61 (s, 3 H, CO2CH3), 4.62 (br s, 1 H, NH), 6.40-6.47 (m, 2 H, ArH), 6.54 (br d, J = 7.8 Hz, 1 H, H-4), 7.04 (dd, J = 7.8, 7.2 Hz, 1 H, H-5), 7.39 (s, 1 H, HC=). 13C NMR (75.4 MHz, CDCl3): δ = 21.5 (CH3Ar), 41.6 [N(CH3)2], 51.1 (CO2
CH3), 98.6 (NC=), 110.4 (C-6), 114.1 (C-2), 118.9 (C-4), 128.8 (C-5), 138.7 (C-3), 146.3 (HC=), 149.1 (C-1), 169.6 (CO2CH3). MS (70 eV): m/z (%) = 234 (4) [M+], 203 (3), 132 (6), 118 (14), 91 (36), 83 (18), 65 (16), 57 (66), 42 (100). Anal. Calcd for C13H18N2O2: C, 66.64; H, 7.74; N, 11.96. Found: C, 66.47; H, 7.64; N, 11.74.
NMR spectral data of representative examples.
Compound 6a: 1H NMR (300 MHz, CDCl3): δ = 3.01 [s, 6 H, N(CH3)2], 3.62 (s, 3 H, CO2CH3), 4.66 (br s, 1 H, NH), 6.62 (br d, J = 7.5 Hz, 2 H, H-2), 6.72 (t, J = 7.5 Hz, 1 H, H-4), 7.15 (br t, J = 7.5 Hz, 1 H, H-3), 7.40 (s, 1 H, HC=). 13C NMR (75.4 MHz, CDCl3): δ = 41.6 [N(CH3)2], 51.1 (CO2
CH3), 98.6 (NC=), 113.4 (C-2), 117.9 (C-4), 129.0 (C-3), 146.3 (HC=), 149.1 (C-1), 169.6 (CO2CH3).
Compound 6c: 1H NMR (300 MHz, CDCl3): δ = 2.22 (s, 3 H, CH3Ar), 3.01 [s, 6 H, N(CH3)2], 3.60 (s, 3 H, CO2CH3), 4.52 (br s, 1 H, NH), 6.51-6.57 (m, 2 H, H-2), 6.93-7.00 (m, 2 H, H-3), 7.36 (s, 1 H, HC=). 13C NMR (75.4 MHz, CDCl3): δ = 20.3 (CH3Ar), 41.6 [N(CH3)2], 51.1 (CO2
CH3), 99.1 (NC=), 113.4 (C-2), 127.1 (C-4), 129.5 (C-3), 146.1 (HC=), 146.8 (C-1), 169.6 (CO2CH3).
Compound 6h: 1H NMR (300 MHz, CDCl3): δ = 1.20 (t, J = 7.2 Hz, 3 H, CH
3CH2O), 3.03 [s, 6 H, N(CH3)2], 3.73 (s, 6 H, OMe), 4.10 (q, J = 7.2 Hz, 2 H, CH3CH
2O), 4.70 (br s, 1 H, NH), 5.84 (d, J = 2.1 Hz, 2 H, H-2, H-6), 5.89 (t, J = 2.1 Hz, 1 H, H-4), 7.36 (s, 1 H, HC=). 13C NMR (75.4 MHz, CDCl3): δ = 14.6 (CH3CH2O), 41.8 [N(CH3)2], 55.05 (OMe), 55.08 (OMe), 59.7 (CO2
CH2CH3), 90.3 (C-4), 92.4 (C-2, C-6), 98.8 (NC=), 146.0 (HC=), 151.5 (C-1), 161.5 (C-3, C-5), 169.0 (CO2Et).
Typical Procedure for Preparation of 5b.
Anhyd AlCl3 (0.057 g, 0.43 mmol) was added to a solution of 6b (0.10 g, 0.43 mmol) in dry CH2Cl2 (100 mL) at r.t. The mixture was stirred at r.t. for 24 h and filtered. The filtrate was washed with H2O (3 × 25 mL), the organic layer was dried (Na2SO4), and the solvent was removed under vacuum. The residue was purified by column chromatography over silica gel (10 g, hexane-EtOAc, 95:5), to give 0.061 g (76%) of 5b as a white solid.
R
f
= 0.33 (hexane-EtOAc, 8:2); mp 97-98 °C (hexane-EtOAc, 7:3) [lit.
[17]
128-129 °C]. IR (KBr): 3324, 1697, 1527, 1441, 1333, 1262, 1211, 764 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.47 (s, 3 H, CH3Ar), 3.94 (s, 3 H, CO2Me), 6.99 (dd, J = 8.1, 0.9 Hz, 1 H, H-5), 7.18 (dd, J = 2.1, 0.9 Hz, 1 H, H-3), 7.20 (br s, 1 H, H-7), 7.56 (d, J = 8.1 Hz, 1 H, H-4), 8.85 (br s, 1 H, NH). 13C NMR (75.4 MHz, CDCl3): δ = 22.0 (CH3Ar), 51.9 (CO2
CH3), 108.8 (C-3), 111.5 (C-7), 122.2 (C-4), 123.0 (C-5), 125.3 (ArC), 126.5 (ArC), 135.7 (ArC), 157.3 (C-7a), 162.5 (CO2CH3). MS (70 eV):
m/z (%) = 189 (24) [M+], 175 (17), 157 (87), 129 (91), 103 (80), 102 (100), 77 (69), 51 (69).
NMR spectral data of representative examples.
Compound 5a: 1H NMR (300 MHz, CDCl3): δ = 3.95 (s, 3 H, CO2CH3), 7.16 (ddd, J = 8.1, 6.8, 1.0 Hz, 2 H, H-5), 7.23 (dd, J = 2.3, 1.0 Hz, 1 H, H-3), 7.33 (ddd, J = 8.4, 6.8, 1.0 Hz, 1 H, H-6), 7.58 (ddd, J = 8.4, 1.0, 0.9 Hz, 1 H, H-7), 7.70 (dd, J = 8.1, 0.9 Hz, 1 H, H-4), 8.98 (br s, 1 H, NH). 13C NMR (75.4 MHz, CDCl3): δ = 52.0 (CO2
CH3), 108.8 (C-3), 111.9 (C-7), 120.8 (C-5), 122.6 (C-4), 125.4 (C-6), 127.1 (C-2), 127.4 (C-3a), 136.8 (C-7a), 162.4 (CO2CH3).
Compound 5c: 1H NMR (300 MHz, CDCl3): δ = 2.43 (s, 3 H, CH3Ar), 3.94 (s, 3 H, CO2CH3), 7.14 (br s, 1 H, H-3), 7.15 (dd, J = 8.4, 1.5 Hz, 1 H, H-6), 7.31 (br d, J = 8.4 Hz, 1 H, H-7), 7.45 (br s, 1 H, H-4), 9.11 (br s, 1 H, NH). 13C NMR (75.4 MHz, CDCl3): δ = 21.4 (CH3Ar), 51.9 (CO2
CH3), 108.2 (C-3), 111.6 (C-7), 121.8 (C-4), 127.0 (C-2), 127.4 (C-6), 127.7 (C-5), 130.1 (C-3a), 135.3 (C-7a), 162.6 (CO2CH3).
Compound 5h: 1H NMR (300 MHz, CDCl3): δ = 1.39 (t, J = 7.0 Hz, 3 H, CH
3CH2O), 3.83 (s, 3 H, OMe), 3.90 (s, 3 H, OMe), 4.38 (q, J = 7.0 Hz, 2 H, CH3CH
2O), 6.18 (d, J = 1.5 Hz, 2 H, H-2, H-5), 6.43 (dd, J = 1.5, 0.9 Hz, 1 H, H-7), 7.27 (dd, J = 2.3, 0.9 Hz, 1 H, H-3), 9.10 (br s, 1 H, NH). 13C NMR (75.4 MHz, CDCl3): δ = 14.4 (CH3CH2O), 55.3 (OMe), 55.5 (OMe), 60.7 (CO2
CH2CH3), 86.1 (C-7), 92.6 (C-5), 106.7 (C-3), 113.7 (C-3a), 124.8 (C-2), 138.6 (C-7a), 155.0 (C-4), 160.1 (C-6), 162.1 (CO2Et).
CCDC-292937 contains all crystallographic details of this publication and is available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK, fax: +44(1223)336033; or deposit@ccdc.cam.ac.uk.