Subscribe to RSS
DOI: 10.1055/s-2006-933388
© Georg Thieme Verlag Stuttgart · New York
Stochastische Resonanz in der Therapie von Bewegungsstörungen
Stochastic resonance in the therapy of mobility disordersPublication History
2005
2006
Publication Date:
13 April 2006 (online)
Zusammenfassung
Die Stochastische-Resonanz-Theorie beschreibt Funktionsmechanismen dynamischer Systeme verschiedener Wissenschaftsbereiche. Entgegen dem üblichen Systemverständnis kann das Verhalten nichtlinearer Systeme, wie z. B. das menschliche Nervensystem, verbessert werden, wenn repetitive Reizkonfigurationen (z. B. Vibrationsreize) mit Störeinflüssen unterlegt werden. Verschiedene neurobiologische Analysen zeigen eine erhöhte Sensitivität von Rezeptoren für Stochastische-Resonanz-Vibrationsreize im Vergleich zu harmonischen Sinus-Reizkonfigurationen. Klinische Studien beschreiben therapeutische Effekte von Stochastischen-Resonanz-Stimuli u. a. bei neurodegenerativen Krankheitsbildern. Erklärungsansätze liegen v. a. im Bereich der Informationsselektion.
Abstract
Stochastic resonance describes the behaviour of dynamic systems in multiple scientific disciplines. In contrast to our usual understanding, stochastic resonance can improve the functioning of nonlinear systems e. g. the human nervous system. Various neurobiological analyses showed significantly higher sensitivity of the human sensory system to stochastic resonance vibratory stimuli compared to sinus oscillations. Clinical studies found therapeutic effects of stochastic resonance primarily in the field of neurodegenerative disorders. Possible explanations have to do with the information selection processes.
Stichworte:
Vibration - Random Noise - Bypassing
Key words:
Vibration - random noise - bypassing
Literatur
- 1 Balkowiec A, Katz D A. Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. J Neurosc. 2002; 22 10399-10407
-
2 Bear M F, Connors B W, Paradiso M A. Neuroscience - Exploring the Brain. Baltimore: Lippincott Williams & Wilkins; 2001
- 3 Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance. J Phys A Mathemat Gen. 1981; 14 L 453-L 457
- 4 Booth F W, Criswell D S. Molecular events underlying Skeletal muscle atrophy and the development of effective countermeasures. Int J Sports Med. 1997; 18 (Suppl 4) S 265-S 269
- 5 Chen H H, Toutelotte W G, Frank E. Muscle Spindle-Derived Neurotrophin 3 regulates synaptic connectivity between Muscle Sensory and Motor Neurons. J Neurosc. 2002; 22 3512-3519
- 6 Cohen A D, Tillerson J L, Smith A D, Schallert T, Zigmond M J. Neuroprotective effects of prior limb use in 6-hydrxydopamine-treated rats: possible role of GDNF. J Neurochemistry. 2003; 85 299-305
- 7 Dupont-Versteegden E E, Houle J D, Gurley C M, Peterson C A. Early changes in muscle fiber size and gene expression in response to spinal cord transection and exercise. Am J Physiol Cell Physiol. 1998; 275 C 1124-C 1133
- 8 Fallon J B, Carr R W, Morgan D L. Stochastic Resonance in Muscle Receptors. J Neurophysiol. 2004; 91 2429-2436
- 9 Gammaitoni L, Hänggi P, Jung P, Marchesoni F. Stochastic Resonance. Rev Mod Physics. 1998; 1 224-287
- 10 Gómez-Pinilla F, Ying Z, Roy R R, Molteni R, Edgerton V R. Voluntary Exercise Induces a BDNF-Mediated Mechanism That Promotes Neuroplasticity. J Neurophysiol. 2002; 88 2187-2195
-
11 Griffin M J. Handbook of human vibration. San Diego: Academic Press; 1996
- 12 Haas C T, Turbanski S, Kaiser I, Schmidtbleicher D. Biomechanische und physiologische Effekte mechanischer Schwingungsreize beim Menschen. Dt Zeitsch Sportmed. 2004; 2 34-43
- 13 Haas C T, Hochsprung A, Turbanski S, Brand S, Schmidtbleicher D. Effects of whole-body-vibration in rehabilitation of spinal cord injury patients. J Neurol. 2004; 251 (Suppl 3) III 114, P 433
-
14 Haas C T, Turbanski S, Santarossa C, Schmidtbleicher. Zu den Effekten mechanischer Schwingungen in der Rehabilitation von spinalen Läsionen. Publikationen zum Neuroplasticity Kongress. 2004 (CD-ROM)
-
15 Haas C T, Turbanski S, Schwed M, Schmidtbleicher D. Neuronale Korrelate apparativ gestützter Trainingsformen. In: Witte K, Edelmann-Nusser J, Sabo A, Moritz EF (Hrsg.): Sporttechnologie zwischen Theorie und Praxis. Aachen: Shaker; 2006: 37-48
-
16 Haas C T, Kessler K, Turbanski S, Schmidtbleicher D. The effects of random whole-body-vibration on symptom structure in Parkinson's disease. Neuro Rehabilitation 2006; 3 (in Druck)
-
17 Haas C T, Schmidtbleicher D. Potentials of Stochastic Resonance in Neurorehabilitation. Abstracts of the 4th EIS Congress. 2006 (in Druck)
- 18 Halford G S, Wilson W H, Phillips S. Processing capacity defined by relational complexity: implications for comparative, developmental, and cognitive psychology. Behav Brain Sci. 1998; 21 (6) 803-831
- 19 Khaodhiar L, Niemi J B, Earnest R, Lima C, Harry J D, Veves A. Enhancing Sensation in Diabetic Neuropathic Foot with mechanical Noise. Diabetis Care. 2003; 26 3280-3283
- 20 Liu W, Lipsitz L A, Montero-Odasso M. et al . Noise-Enhanced Vibrotactile Sensitivity in Older Adults, Patients With Stroke, and Patients With Diabetic Neuropathy Arch. Phys Med Rehabil. 2002; 83 171-176
- 21 Marqueste T, Alliez J R, Alluin O, Jammes Y, Decherchi P. Neuromuscular rehabilitation by treadmill running or electrical stimulation after peripheral nerve injury and repair. J Appl Physiol. 2004; 96 1988-1995
- 22 Morrissey M C, Brewster C E, Shields C L, Brown M. The effects of electrical stimulation on the quadriceps during postoperative knee immobilization. Am J Sports Med. 1985; 13 40-45
- 23 Otis J S, Roy R R, Edgerton V R, Talmadge R J. Adaptations in metabolic capacity of rat soleus after paralysis. J Appl Physiol. 2004; 96 584-596
- 24 Roy R R, Baldwin K M, Edgerton V R. The plasticity of skeletal muscle: effects of neuromuscular activity. Exerc Sport Sci Rev. 1991; 19 269-312
- 25 Schmidtbleicher D, Haas C T, Turbanski S. Vibration Training in Rehabilitation. Proceedings of the International Symposium on Biomechanics in Sports 2005: 71-79
- 26 Schuhfried O, Mittermaier C, Jovanovic T, Pieber K, Paternostro-Sluga T. Effects of whole-body vibration in patients with multiple sclerosis: a pilot study. Clin Rehabil. 2005; 19 834-842
- 27 Stacey W C, Durand D M. Stochastic Resonance Improves Signal Detection in Hippocampal CA1 Neurons. J Neurophysiol. 2000; 83 1394-1402
-
28 Tanaka S M, Alam I, Turner C H. Stochastic resonance in osteogenic response to mechanical loading. FASEB Journal 2002 (www.fasebj.org)
- 29 Tougaard J. Signal detection theory, detectability and stochastic resonance effects. Biol Cybern. 2002; 87 79-90
- 30 Turbanski S, Haas C T, Schmidtbleicher D. Effects of random whole-body-vibration on postural stability in Parkinson's disease. Research in Sports Medicine. 2005; 13 243-257
- 31 Urbach D, Nebelung W, Röpke M, Becker R, Awiszus F. Bilateraler Funktionsverlust der Quadrizepsmuskulatur nach einseitiger Kreuzbandruptur mit Begleitverletzung durch zentrales Aktivierungsdefizit. Unfallchir. 2000; 103 949-955
- 32 Ward L W, Neiman A, Moss F. Stochastic resonance in psychophysis and in animal behavoir. Biol Cybern. 2002; 87 91-101
- 33 Wells C, Ward L M, Chua R, Inglis J T. Touch Noise Increases Vibrotactile Sensitivity in Old and Young. Psychol Science. 2004; 16 (4) 313-320
- 34 Xiao J, Hu G, Liu H, Zhang Y. Frequency sensitive stochastic resonance in periodically forced and globally coupled systems. Eur Phys J. 1998; B5 133-138
Korrespondenzadresse
Dr. C. T. Haas
Institut für Sportwissenschaften · J. W. Goethe-Universität Frankfurt am Main
Ginnheimer Landstr. 39
60487 Frankfurt
Phone: 0 69/79 82 45 23
Fax: 0 69/79 82 45 74
Email: c.haas@sport.uni-frankfurt.de