Synlett 2006(6): 841-844  
DOI: 10.1055/s-2006-939052
LETTER
© Georg Thieme Verlag Stuttgart · New York

Thiourea-Catalyzed Direct Reductive Amination of Aldehydes

Dirk Menche*, Fatih Arikan
Gesellschaft für Biotechnologische Forschung mbH, Medizinische Chemie, Mascheroder Weg 1, 38124 Braunschweig, Germany
Fax: +49(531)6181461; e-Mail: dme05@gbf.de;
Further Information

Publication History

Received 20 January 2006
Publication Date:
14 March 2006 (online)

Abstract

A hydrogen-bond-catalyzed direct reductive amination of aldehydes is reported. The acid- and metal-free process uses thiourea as organocatalyst and the Hantzsch ester for transfer-hydrogenation and allows for the high-yielding synthesis of diverse amines.

    References and Notes

  • For reviews, see:
  • 1a Martens J. In Houben-Weyl   4th ed., Vol. E21d:  de Meijere A. Thieme; Stuttgart: 1995.  p.4199 
  • 1b Baxter EW. Reitz AB. Organic Reactions   Vol. 59:  Wiley; New York: 2002.  p.1 
  • 1c Gomez S. Peters JA. Maschmeyer T. Adv. Synth. Catal.  2002,  344:  1037 
  • 1d Tararov VI. Kadyrov R. Riermeier TH. Fischer C. Börner A. Adv. Synth. Catal.  2004,  346:  561 
  • 1e Ohkuma T. Noyori R. In Comprehensive Asymmetric Catalysis   1st Suppl.:  Jacobsen EN. Pfaltz A. Yamamoto H. Springer; New York: 2004. 
  • 2a Ghose AK. Viswanadhan VN. Wendoloski JJ. J. Comb. Chem.  1999,  1:  55 
  • 2b Henkel T. Brunne RM. Mueller H. Reichel F. Angew. Chem. Int. Ed.  1999,  38:  643 
  • For selected recent examples, see:
  • 3a Gross T. Seayad AM. Ahmad M. Beller M. Org. Lett.  2002,  4:  2055 
  • 3b Miriyala B. Bhattacharyya S. Williamson JS. Tetrahedron  2004,  60:  1463 
  • 3c Itoh T. Nagata K. Miyazaki M. Ishikawa H. Kurihara A. Ohsawa A. Tetrahedron  2004,  60:  6649 
  • 4a John RO. In Comprehensive Biological Catalysis   Vol 2:  Sinnot M. Academic Press; London: 1998.  p.173 
  • 4b Silverman RB. The Organic Chemistry of Enzyme-Catalyzed Reactions   Academic Press; London: 2002.  p.428 
  • 5 Steevens JB. Pandit UK. Tetrahedron  1983,  39:  1395 
  • 6 Fujii M. Aida T. Yoshihara M. Ohno A. Bull. Chem. Soc. Jpn.  1989,  62:  3845 
  • 7 Itoh T. Nagata K. Kurihara A. Miyazaki M. Ohsawa A. Tetrahedron Lett.  2002,  43:  3105 
  • 8 Rueping M. Sugioni E. Azap C. Theissmann T. Bolte M. Org. Lett.  2005,  7:  3781 
  • 9 Hoffmann S. Seayad AM. List B. Angew. Chem. Int. Ed.  2005,  44:  7424 
  • 10 Storer RI. Carrera DE. Ni Y. MacMillan DWC. J. Am. Chem. Soc.  2006,  128:  84 
  • For a review and recent examples on the use of urea and analogues in organocatalysis, see:
  • 11a Berkessel A. Gröger H. Asymmetric Organocatalysis   VCH; Weinheim: 2005. 
  • 11b Yoon TP. Jacobsen EN. Angew. Chem. Int. Ed.  2005,  44:  466 
  • 11c Fuerst DE. Jacobsen EN. J. Am. Chem. Soc.  2005,  127:  8964 
  • 11d Berkessel A. Cleemann F. Mukherjee S. Müller TN. Lex J. Angew. Chem. Int. Ed.  2005,  44:  807 
  • 11e Xu X. Yabuta T. Yuan P. Takemoto Y. Synlett  2006,  137 
  • 12a

    Benzene and CH2Cl2 are as suitable as toluene, while more polar solvents such as dioxane or THF are less efficient. Protic solvents (e.g. MeOH) are of limited applicability.

  • 12b

    Upon extended reaction times, the transformation may also be carried out at r.t.

  • 14a

    The catalyst loading may be reduced to 1 mol% upon extended reaction times (>48 h).

  • 14b

    Under the same reaction conditions but in the absence of thiourea, the product amine is only obtained in low yields proving the vital influence of the organocatalyst.

  • 15 This assumption is supported by previous calculations on related thiourea complexes with aldimines and amines: Vachal P. Jacobsen EN. J. Am. Chem. Soc.  2002,  124:  10012 
13

General Procedure.
A solution of the aldehyde (1a-f, 2.20 mmol) and the amine (2a-g, 2.00 mmol) in toluene (5 mL) is treated with the Hantzsch ester (3, 608 mg, 2.40 mmol), thiourea (4, 15.2 mg, 0.200 mmol) and MS 5 Å (2.0 g). The mixture is stirred 24 h at 70 °C under nitrogen. After filtration over Celite®, the solvent is evaporated and the residue purified by flash chromatography on silica gel using mixtures of PE and EtOAc as eluants to give the product amines (5a-l) in pure form.

16

All new compounds had spectroscopic data in support of the assigned structures.
Compound 5d: 1H NMR (300 MHz, CDCl3): δ = 3.73 (s, 3 H), 4.27 (s, 2 H), 6.56 (d, J = 9.04 Hz, 2 H), 6.76 (d, J = 9.04 Hz, 2 H), 7.12 (d, J = 8.48 Hz, 1 H), 7.60 (d, J = 10.74 Hz, 1 H), 8.10 (d, J = 2.26 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 47.95, 55.80, 114.37, 115.02, 120.26, 123.37, 132.45, 133.56, 136.76, 141.58, 152.66, 154.27. HRMS (ESI): m/z calcd for C14H15N2O4 [M + H]+: 275.1032. Found: 275,1034.
Compound 5k: 1H NMR (300 MHz, CDCl3): δ = 2.54 (s, 3 H), 4.21 (s, 1 H), 4.37 (s, 2 H), 6.71 (d, J = 4.14 Hz, 2 H), 6.82 (d, J = 3.96 Hz 2 H), 7.26-7.36 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 26.73, 48.31, 111.82, 118.01, 127.55, 128.77, 129.40, 138.27, 139.89, 148.29, 198.57. HRMS (ESI): m/z calcd for C15H16NO [M + H]+: 226,1232. Found: 226,1233.
Compound 5l: 1H NMR (400 MHz, CDCl3): δ = 3.52 (s, 2 H), 4.31 (s, 2 H), 6.60 (d, J = 8.65 Hz, 2 H), 7.07 (d, J = 8.65 Hz, 2 H), 7.26-7.34 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 40.00, 48.47, 113.12, 122.18, 127.54, 128.69, 130.24, 139.24, 139.35, 147.43, 176.85. HRMS (ESI): m/z calcd for C15H16NO2 [M + H]+: 242.1181. Found: 242.1178.