References and Notes
1a Stereoselective Synthesis of Steroids and Related Compounds, VIII. For part VII, see: Groth U.
Halfbrodt W.
Kalogerakis A.
Köhler T.
Kreye P.
Synlett
2004,
291
1b Transition Metal Catalyzed Reactions in Organic Synthesis, XI. For part X, see: Groth U.
Huhn T.
Kesenheimer C.
Kalogerakis A.
Synlett
2005,
1758
Applications to natural products synthesis:
2a
Johnson EP.
Vollhardt KPC.
J. Am. Chem. Soc.
1991,
113:
381
2b
Germanas J.
Aubert C.
Vollhardt KPC.
J. Am. Chem. Soc.
1991,
113:
4006
2c
Pérez D.
Siesel BA.
Malaska MJ.
David E.
Vollhardt KPC.
Synlett
2000,
306
2d
Eichberg MJ.
Dorta RL.
Lamottke K.
Vollhardt KPC.
Org. Lett.
2000,
2:
2479
2e
Eichberg MJ.
Dorta RL.
Grotjahn DB.
Lamottke K.
Schmidt M.
Vollhardt KPC.
J. Am. Chem. Soc.
2001,
123:
9324
For the synthesis of the taxoid core, see also:
2f
Phansavath P.
Aubert C.
Malacria M.
Tetrahedron Lett.
1998,
39:
1561
2g
Petit M.
Chouraqui G.
Phansavath P.
Aubert C.
Malacria M.
Org. Lett.
2002,
4:
1027
3
Groth U.
Richter N.
Kalogerakis A.
Eur. J. Org. Chem.
2003,
4634
4a
Wiechert R.
Angew. Chem., Int. Ed. Engl.
1970,
9:
321 ; Angew. Chem. 1970, 82, 331
4b
Wiechert R.
Angew. Chem., Int. Ed. Engl.
1970,
16:
506 ; Angew. Chem. 1977, 89, 513
4c
Quinkert G.
Stark H.
Angew. Chem., Int. Ed. Engl.
1983,
22:
637 ; Angew. Chem. 1983, 95, 651
4d
Steglich W.
Fugmann B.
Lang-Fugmann S.
RÖMPP Natural Products
Thieme;
Stuttgart:
2000.
p.608
4e
Krause S.
Schmalz H.-G. In
Organic Synthesis Highlights, IV
Wiley-VCH;
Weinheim:
2000.
p.212
4f
Posner GH.
Kahraman M.
Eur. J. Org. Chem.
2003,
3889
4g
Habermehl G.
Hammann PE.
Krebs HC.
Naturstoffchemie
Springer;
Berlin:
2002.
p.49
4h Recently, a new method for the construction of steroids was reported: Sünnemann HW.
de Meijere A.
Angew. Chem.
2004,
116:
913 ; Angew. Chem. Int. Ed. 2004, 43, 895
4i For the use of the DÆABCD approach in the synthesis of steroids see also: Vollhardt KPC.
Pure Appl. Chem.
1985,
57:
1819
4j
Petit M.
Aubert C.
Malacria M.
Org. Lett.
2004,
6:
3937
5
Groth U.
Huhn T.
Richter N.
Liebigs Ann. Chem.
1993,
49
6a
Haruta R.
Ishiguro M.
Ikeda N.
Yamamoto H.
J. Am. Chem. Soc.
1982,
104:
7667
6b
Ikeda N.
Isao A.
Yamamoto H.
J. Am. Chem. Soc.
1986,
108:
483
7
Pereira R.
Iglesias B.
Lera AR.
Tetrahedron
2001,
57:
7871
8
Baldwin JE.
Romeril SP.
Lee V.
Claridge TDW.
Org. Lett.
2001,
3:
1145
9
Franck X.
Araujo MEV.
Julian J.-C.
Hocquemiller R.
Figadère B.
Tetrahedron Lett.
2001,
42:
2801
10
Eckenberg P.
Groth U.
Huhn T.
Richter N.
Schmeck C.
Tetrahedron
1993,
49:
1619
11
Corey EJ.
Fuchs PL.
Tetrahedron Lett.
1972,
36:
3769
12
Cobalt-mediated [2+2+2] cycloaddition: A solution of enediyne 14 (200 mg, 0.54 mmol) in toluene (80 mL) was cooled to -70 °C and the apparatus was evacuated for 3 min (0.5 Torr). The flask was allowed to warm to r.t. and the apparatus was filled with argon. The solution of enediyne in toluene was cooled to -70 °C and the above procedure was repeated twice. CpCo(CO)2 (117 mg, 0.65 mmol) was added and the reaction mixture was refluxed under radiation with visible light until no starting material could be detected by TLC analysis. The reaction mixture was cooled to r.t. and volatile components were removed in vacuo (20 °C/0.1 Torr). The residue was dissolved in degassed Et2O-pentane (1:4, 10 mL) and filtered through celite under an argon atmosphere. FeCl3·H2O (0.49 g, 1.8 mmol) was dissolved in MeCN (20 mL), pentane (20 mL) was added and the mixture cooled to -20 °C. At this temperature the filtrate was added under stirring, and stirring was continued for 30 min. The reaction mixture was cooled to -60 °C and the pentane layer was removed from the frozen MeCN layer. The MeCN layer was allowed to warm to -20 °C, pentane (15 mL) was added, and the above procedure was repeated four times. The pentane layers were combined, the solvent was removed in vacuo (30 °C/18 Torr), and the residue purified by chromatography on silica gel (Et2O-pentane, 1:1) to afford steroids 15 (66.65 mg, 0.18 mmol, 33%).
Compound 15a/15′a (signals of the major diastereomeric pair): R
f
= 0.27 (Et2O-PE, 1:1). 1H NMR (250 MHz, CDCl3): δ = 0.76 and 0.84 (2 s, 6 H, 2 × CH3), 1.20-2.80 (m, 16 H, CH2, CH), 3.40 (s, 3 H, OCH3), 3.50-3.64 and 3.66-3.79 (2 × m, 5 H, OCH2CH2O, OCH), 4.78 (dd, J = 6 Hz, 6 Hz, 2 H, OCH2O), 5.47-5.68 (m, 2 H, C=CHC=CH).
13C NMR (50.3 MHz, CDCl3): δ = 13.66 and 13.81 (C-18), 18.05, 18.38, 20.20, 20.23, 26.17, 28.80, 29.06, 33.96, 35.78, 35.85, 35.93, 36.12, 37.08, 38.03, and 38.28 (C-1, C-2, C-4, C-10, C-11, C-12, C-15, C-16), 20.30 (C-19), 46.27 and 46.58 (C-9), 46.77 (C-13), 59.04 (C-23), 66.78 and 71.79 (C-21, C-22), 70.74 and 75.81 (C-3), 93.35 and 93.73 (C-20), 116.50, 116.57, 119.66 and 119.99 (C-6, C-7), 137.46, 137.94, 140.82 and 142.15 (C-5, C-8), 220.97 and 221.15 (C-17). MS (70 eV): m/z (%) = 374 (2) [M+], 268 (100) [M - C4H10O3]+, 89 (35) [C4H10O3
+], 59 (60) [C3H7O+]. HRMS: m/z calcd C23H34O4 for 374.2457; found: 374. 2459.
13 Purchased from Aldrich.
14a
Confalone PN.
Kulesha ID.
Uskoković MR.
J. Org. Chem.
1981,
46:
1030
14b
Okabe M.
Sun R.-C.
Scalone M.
Jibilian CH.
Hutchings SD.
J. Org. Chem.
1995,
60:
767