Subscribe to RSS
DOI: 10.1055/s-2006-939068
Asymmetric Conjugate Addition of O-Benzylhydroxylamine to α,β-Unsaturated 3-Acyloxazolidin-2-ones Catalyzed by Sc(OTf)3/i-Pr-Pybox Complex
Publication History
Publication Date:
24 April 2006 (online)
Abstract
The asymmetric conjugate addition of O-benzylhydroxylamine to α,β-unsaturated 3-acyloxazolidin-2-ones was smoothly catalyzed by the Sc(OTf)3/2,6-bis[(S)-4-isopropyloxazolin-2-yl]pyridine (i-Pr-pybox) complex in the presence of MS 4 Å to give the corresponding β-amino acids in good conversions with high enantioselectivities (up to 91% ee).
Key words
additional reactions - amino acids - asymmetric catalyst - lanthanides - scandium
- For reviews, see:
-
1a
Lanthanides, Chemistry and Use in Organic Synthesis, In Topics in Organometallic Chemistry
Kobayashi S. Springer; Heidelberg: 1999. -
1b
Kobayashi S. Sc(III) Lewis Acids, In Lewis Acids in Organic Synthesis Vol. 2:Yamamoto H. VCH; Weinheim: 2000. Chap. 19. -
1c
Shibasaki M.Yamada K.Yoshizawa N. Lanthanide Lewis Acids Catalysis, In Lewis Acids in Organic Synthesis Vol. 2:Yamamoto H. VCH; Weinheim: 2000. Chap. 20. -
1d
Kobayashi S. Eur. J. Org. Chem. 1999, 15 -
1e
Mikami K.Terada M.Matsuzawa H. Angew. Chem. Int. Ed. 2002, 41: 3555 -
1f
Shibasaki M.Yoshizawa N. Chem. Rev. 2002, 102: 2187 -
1g
Kobayashi S.Sugiura M.Kitagawa H.Lam WWL. Chem. Rev. 2002, 102: 2227 -
1h
Inanaga J.Furuno H.Hayano T. Chem. Rev. 2002, 102: 2211 -
2a
Sugihara H.Daikai K.Jin XL.Furuno H.Inanaga J. Tetrahedron Lett. 2002, 43: 2735 -
2b
Jin XL.Sugihara H.Daikai K.Tateshi H.Jin YZ.Furuno H.Inanaga J. Tetrahedron 2003, 58: 8321 -
2c
Yamagiwa N.Matsunaga S.Shibasaki M. J. Am. Chem. Soc. 2003, 125: 16178 -
2d
Ohshima T.Nemoto T.Tosaki S.Kakei H.Gnanadesikan V.Shibasaki M. Tetrahedron 2003, 59: 10485 -
2e
Yamagiwa N.Matsunaga S.Shibasaki M. Angew. Chem. Int. Ed. 2004, 43: 4493 -
2f
Yamagiwa N.Qin H.Matsunaga S.Shibasaki M. J. Am. Chem. Soc. 2005, 127: 13419 -
2g
Tosaki S.Tsuji R.Ohshima T.Shibasaki M. J. Am. Chem. Soc. 2005, 127: 2147 -
3a
Evans DA.Sweeney ZK.Rovis T.Tedrow JS. J. Am. Chem. Soc. 2001, 123: 12095 -
3b
Desimoni G.Faita G.Guala M.Pratelli C. J. Org. Chem. 2003, 68: 7862 -
3c
Evans DA.Wu J. J. Am. Chem. Soc. 2003, 125: 10162 -
3d
Evans DA.Scheidt KA.Fandrick KR.Lam HW.Wu J. J. Am. Chem. Soc. 2003, 125: 10780 -
3e
Keith JM.Jacobsen EN. Org. Lett. 2004, 6: 153 -
3f
Desimoni G.Faita G.Guala M.Laurenti A. Eur. J. Org. Chem. 2004, 3057 -
3g
Desimoni G.Faita G.Guala M.Laurenti A.Mella M. Chem. Eur. J. 2005, 11: 3816 -
3h
Suga H.Inoue K.Inoue S.Kakehi A.Shiro M. J. Org. Chem. 2005, 70: 47 -
3i
Evans DA.Wu J. J. Am. Chem. Soc. 2005, 127: 8006 -
3j
Evans DA.Fandrick KR.Song H.-J. J. Am. Chem. Soc. 2005, 127: 8942 -
4a
Fukuzawa S.Fujimoto K.Komuro Y.Matsuzawa H. Org. Lett. 2002, 4: 707 -
4b
Fukuzawa S.Matsuzawa H.Metoki K. Synlett 2001, 709 -
4c
Fukuzawa S.Metoki K.Esumi S. Tetrahedron 2003, 59: 10445 -
4d
Fukuzawa S.Komuro Y.Nakano N.Obara S. Tetrahedron Lett. 2003, 44: 3671 -
5a
Georg GI. The Organic Chemistry of β-Lactams VCH; New York: 1993. -
5b
Ghosez L.Marchand-Brynaert J. In Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I. Pergamon; Oxford: 1991. p.85 -
5c
Palomo C.Aizpurua JM.Ganboa I.Oiarbide M. Eur. J. Org. Chem. 1999, 3223 -
5d
Benaglia M.Cinquini M.Cozzi F. Eur. J. Org. Chem. 2000, 563 -
5e
Singh GS. Tetrahedron 2003, 59: 7631 -
5f
Gois PMP.Afonso CAM. Eur. J. Org. Chem. 2004, 3773 -
5g
France S.Weatherwax A.Taggi AE.Lectka T. Acc. Chem. Res. 2004, 37: 592 -
6a
Müller P.Fruit C. Chem. Rev. 2003, 103: 2905 -
6b
Dolence EK.Roylance JB. Tetrahedron: Asymmetry 2004, 15: 3307 -
6c
Galonic DP.Ide ND.van der Donk WA.Gin DY. J. Am. Chem. Soc. 2005, 127: 7359 -
6d
Gao G.-Y.Harden JD.Zhang XP. Org. Lett. 2005, 7: 3191 -
6e
Patwardhan AP.Pulgam VR.Zhang Y.Wulff WD. Angew. Chem. Int. Ed. 2005, 44: 6169 -
7a
Liu M.Sibi P. Tetrahedron 2002, 58: 7991 -
7b
Taggi AE.Hafez AM.Lectka T. Acc. Chem. Res. 2003, 36: 10 -
7c
Córdova A. Acc. Chem. Res. 2004, 37: 102 -
7d
Notz W.Tanaka F.Barbas CF. Acc. Chem. Res. 2004, 37: 580 -
7e
Córdova A. Chem. Eur. J. 2004, 10: 1987 -
7f
Jacobsen MF.Ionita L.Skrydstrup T. J. Org. Chem. 2004, 69: 4792 -
7g
Hamada T.Manabe K.Kobayashi S. J. Am. Chem. Soc. 2004, 126: 7768 -
7h
Kobayashi S.Arai K.Shimizu H.Ihori Y.Ishitani H.Yamashita Y. Angew. Chem. Int. Ed. 2005, 44: 761 -
7i
Akiyama T.Suzuki A.Fuchibe K. Synlett 2005, 1024 -
7j
Takahashi E.Fujisawa H.Yanai T.Mukaiyama T. Chem. Lett. 2005, 34: 468 -
7k
Shi M.Cui S.-C.Liu Y.-H. Tetrahedron 2005, 61: 4965 -
7l
Poulsen TB.Alemparte C.Saaby S.Bella M.Jørgensen AK. Angew. Chem. Int. Ed. 2005, 44: 2896 -
7m
Lu C.-D.Liu H.Chen Z.-Y.Hu W.-H.Mi A.-Q. Org. Lett. 2005, 7: 83 -
7n
Hamashima Y.Sasamoto N.Hotta D.Somei H.Umebayashi N.Sodeoka M. Angew. Chem. Int. Ed. 2005, 44: 1525 -
8a
Falborg L.Jørgensen AK. J. Chem. Soc., Perkin Trans. 1 1996, 2823 -
8b
Sibi MP.Shay JJ.Liu M.Jasperse CP. J. Am. Chem. Soc. 1998, 120: 6615 -
8c
Zhuang W.Hazell RG.Jørgensen AK. Chem. Commun. 2001, 1240 -
8d
Cardillo G.Gentilucci L.Matteis VD. J. Org. Chem. 2002, 67: 5957 -
8e
Sibi MP.Gorikunti U.Liu M. Tetrahedron 2002, 58: 8357 -
8f
Wabnitz TC.Spencer JB. Org. Lett. 2003, 5: 2141 -
8g
Xu LW.Xia CG. Eur. J. Org. Chem. 2005, 633 -
8h
Prieto A.Fernandez R.Lassaletta JM.Vazquez J.Alvarez E. Tetrahedron 2005, 61: 4609 -
8i
Kantam ML.Neeraja V.Kavita B.Neelima B.Chandhuri MK.Hussain S. Adv. Synth. Catal. 2005, 347: 763 -
8j
Verma AK.Kumar R.Chaudhary P.Saxena A.Sharkar R.Mozamdar S.Chandra R. Tetrahedron Lett. 2005, 46: 5229 - If this reaction was carried out without MS 4 Å, the enantioselectivity of both products decreased [4a; 38% ee (S), 5a; 24% ee (S)]. The effect of molecular sieves has been reported. For examples see:
-
10a
Gothelf VK.Hazell GR.Jørgensen AK. J. Org. Chem. 1996, 61: 346 -
10b
Kodama H.Ito J.Hori K.Ohta T.Furukawa I. J. Organomet. Chem. 2000, 603: 6 -
10c
Suga H.Inoue K.Inoue S.Kakehi A. J. Am. Chem. Soc. 2002, 124: 14836 -
10d
Liang G.Trauner D. J. Am. Chem. Soc. 2004, 126: 9544 -
13a
Nishiyama H.Kondo M.Nakamura T.Itoh K. Organometallics 1991, 10: 500 -
13b
Davies IW.Gerena L.Lu N.Larsen RD.Reider PJ. J. Org. Chem. 1996, 61: 9629 -
14a
Ho G.-J.Mathre DJ. J. Org. Chem. 1995, 60: 2271 -
14b
Evans DA.Miller SJ.Leckta T.von Matt P. J. Am. Chem. Soc. 1999, 121: 7559 -
14c
Evans DA.Scheidt KA.Johnston JN.Willis MC. J. Am. Chem. Soc. 2001, 123: 4480
References and Notes
The bidentate-type substrate was known to produce a good enantioselectivity for the reaction using rare-earth Lewis acids, [14] and the corresponding product, the β-amino-3-acyloxazolidin-2-one derivative, could be easily transformed into more useful compounds.
11The reason of this phenomenon was thought to be the failure of the regeneration of the complex between Sc(OTf)3 and i-Pr-pybox at cold temperatures.
12
Typical Procedures (Table 2).
Under a nitrogen atmosphere, to the suspension of Sc(OTf)3 (10.34 mg, 0.021 mmol) and MS 4 Å (75 mg), which were predried at 180 °C for 3 h under reduced pressure, in CH2Cl2 (5 mL) was added pybox (1a, 6.95 mg, 0.023 mmol) in CH2Cl2 (3 mL) at 0 °C. After stirring for 0.5 h, a solution of 3-crotonoyloxazolidin-2-one (2, 63.61 mg, 0.41 mmol) in CH2Cl2 (3 mL) was added and stirred for an additional 0.5 h. Then, O-benzylhydroxylamine (3, 0.45 mmol), which was used as a CH2Cl2 solution (0.5 M, 0.9 mL, 0.45 mmol), was slowly added dropwise at the same temperature. After 1 h, the reaction was quenched with sat. aq Na2CO3 and the mixture was extracted with CH2Cl2. The combined organic layer was dried over Na2SO4. This organic layer was filtered and evaporated under reduced pressure. The residue was purified by recycling preparative HPLC (GPC column, CHCl3 as eluent) to give the desired products. The enantioselectivity was determined by an HPLC analysis using a chiral column: Chiralpak AD (0.46 cm × 25 cm).
Compound 4a: 1H NMR (300 MHz, CDCl3): δ = 1.17 (d, 3 H, J = 6.45 Hz), 2.87 (dd, 1 H, J = 4.71 Hz, 16.4 Hz), 3.21 (dd, 1 H, J = 8.22 Hz, 16.4 Hz), 3.58-3.67 (m, 1 H), 4.19-4.33 (m, 2 H), 4.67 (s, 2 H), 5.77 (s, 1 H), 7.28-7.37 (m, 5 H). 13C NMR (300 MHz, CDCl3): δ = 18.1, 39.4, 42.2, 52.9, 61.8, 76.3, 127.6, 128.2, 128.3, 137.6, 153.5, 171.9.
Compound 5a: 1H NMR (300 MHz, CDCl3): δ = 1.09 (d, 3 H, J = 6.45 Hz), 2.31 (dd, 1 H, J = 4.08 Hz, 15.2 Hz), 2.36 (dd, 1 H, J = 4.71 Hz, 15.8 Hz), 3.29-3.38 (m, 1 H), 4.52 (s, 2 H), 4.88 (s, 2 H), 5.39 (s, 1 H), 7.24-7.37 (m, 10 H), 9.08 (s, 1 H). 13C NMR (300 MHz, CDCl3): δ = 17.7, 37.7, 52.7, 76.3, 77.9, 128.0, 128.3, 128.4, 128.6, 128.7, 129.1, 135.6, 137.3, 169.2.