References and Notes
For reviews, see:
1a
Lanthanides, Chemistry and Use in Organic Synthesis, In Topics in Organometallic Chemistry
Kobayashi S.
Springer;
Heidelberg:
1999.
1b
Kobayashi S.
Sc(III) Lewis Acids, In Lewis Acids in Organic Synthesis
Vol. 2:
Yamamoto H.
VCH;
Weinheim:
2000.
Chap. 19.
1c
Shibasaki M.
Yamada K.
Yoshizawa N.
Lanthanide Lewis Acids Catalysis, In Lewis Acids in Organic Synthesis
Vol. 2:
Yamamoto H.
VCH;
Weinheim:
2000.
Chap. 20.
1d
Kobayashi S.
Eur. J. Org. Chem.
1999,
15
1e
Mikami K.
Terada M.
Matsuzawa H.
Angew. Chem. Int. Ed.
2002,
41:
3555
1f
Shibasaki M.
Yoshizawa N.
Chem. Rev.
2002,
102:
2187
1g
Kobayashi S.
Sugiura M.
Kitagawa H.
Lam WWL.
Chem. Rev.
2002,
102:
2227
1h
Inanaga J.
Furuno H.
Hayano T.
Chem. Rev.
2002,
102:
2211
2a
Sugihara H.
Daikai K.
Jin XL.
Furuno H.
Inanaga J.
Tetrahedron Lett.
2002,
43:
2735
2b
Jin XL.
Sugihara H.
Daikai K.
Tateshi H.
Jin YZ.
Furuno H.
Inanaga J.
Tetrahedron
2003,
58:
8321
2c
Yamagiwa N.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2003,
125:
16178
2d
Ohshima T.
Nemoto T.
Tosaki S.
Kakei H.
Gnanadesikan V.
Shibasaki M.
Tetrahedron
2003,
59:
10485
2e
Yamagiwa N.
Matsunaga S.
Shibasaki M.
Angew. Chem. Int. Ed.
2004,
43:
4493
2f
Yamagiwa N.
Qin H.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2005,
127:
13419
2g
Tosaki S.
Tsuji R.
Ohshima T.
Shibasaki M.
J. Am. Chem. Soc.
2005,
127:
2147
3a
Evans DA.
Sweeney ZK.
Rovis T.
Tedrow JS.
J. Am. Chem. Soc.
2001,
123:
12095
3b
Desimoni G.
Faita G.
Guala M.
Pratelli C.
J. Org. Chem.
2003,
68:
7862
3c
Evans DA.
Wu J.
J. Am. Chem. Soc.
2003,
125:
10162
3d
Evans DA.
Scheidt KA.
Fandrick KR.
Lam HW.
Wu J.
J. Am. Chem. Soc.
2003,
125:
10780
3e
Keith JM.
Jacobsen EN.
Org. Lett.
2004,
6:
153
3f
Desimoni G.
Faita G.
Guala M.
Laurenti A.
Eur. J. Org. Chem.
2004,
3057
3g
Desimoni G.
Faita G.
Guala M.
Laurenti A.
Mella M.
Chem. Eur. J.
2005,
11:
3816
3h
Suga H.
Inoue K.
Inoue S.
Kakehi A.
Shiro M.
J. Org. Chem.
2005,
70:
47
3i
Evans DA.
Wu J.
J. Am. Chem. Soc.
2005,
127:
8006
3j
Evans DA.
Fandrick KR.
Song H.-J.
J. Am. Chem. Soc.
2005,
127:
8942
4a
Fukuzawa S.
Fujimoto K.
Komuro Y.
Matsuzawa H.
Org. Lett.
2002,
4:
707
4b
Fukuzawa S.
Matsuzawa H.
Metoki K.
Synlett
2001,
709
4c
Fukuzawa S.
Metoki K.
Esumi S.
Tetrahedron
2003,
59:
10445
4d
Fukuzawa S.
Komuro Y.
Nakano N.
Obara S.
Tetrahedron Lett.
2003,
44:
3671
5a
Georg GI.
The Organic Chemistry of β-Lactams
VCH;
New York:
1993.
5b
Ghosez L.
Marchand-Brynaert J. In Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.85
5c
Palomo C.
Aizpurua JM.
Ganboa I.
Oiarbide M.
Eur. J. Org. Chem.
1999,
3223
5d
Benaglia M.
Cinquini M.
Cozzi F.
Eur. J. Org. Chem.
2000,
563
5e
Singh GS.
Tetrahedron
2003,
59:
7631
5f
Gois PMP.
Afonso CAM.
Eur. J. Org. Chem.
2004,
3773
5g
France S.
Weatherwax A.
Taggi AE.
Lectka T.
Acc. Chem. Res.
2004,
37:
592
6a
Müller P.
Fruit C.
Chem. Rev.
2003,
103:
2905
6b
Dolence EK.
Roylance JB.
Tetrahedron: Asymmetry
2004,
15:
3307
6c
Galonic DP.
Ide ND.
van der Donk WA.
Gin DY.
J. Am. Chem. Soc.
2005,
127:
7359
6d
Gao G.-Y.
Harden JD.
Zhang XP.
Org. Lett.
2005,
7:
3191
6e
Patwardhan AP.
Pulgam VR.
Zhang Y.
Wulff WD.
Angew. Chem. Int. Ed.
2005,
44:
6169
7a
Liu M.
Sibi P.
Tetrahedron
2002,
58:
7991
7b
Taggi AE.
Hafez AM.
Lectka T.
Acc. Chem. Res.
2003,
36:
10
7c
Córdova A.
Acc. Chem. Res.
2004,
37:
102
7d
Notz W.
Tanaka F.
Barbas CF.
Acc. Chem. Res.
2004,
37:
580
7e
Córdova A.
Chem. Eur. J.
2004,
10:
1987
7f
Jacobsen MF.
Ionita L.
Skrydstrup T.
J. Org. Chem.
2004,
69:
4792
7g
Hamada T.
Manabe K.
Kobayashi S.
J. Am. Chem. Soc.
2004,
126:
7768
7h
Kobayashi S.
Arai K.
Shimizu H.
Ihori Y.
Ishitani H.
Yamashita Y.
Angew. Chem. Int. Ed.
2005,
44:
761
7i
Akiyama T.
Suzuki A.
Fuchibe K.
Synlett
2005,
1024
7j
Takahashi E.
Fujisawa H.
Yanai T.
Mukaiyama T.
Chem. Lett.
2005,
34:
468
7k
Shi M.
Cui S.-C.
Liu Y.-H.
Tetrahedron
2005,
61:
4965
7l
Poulsen TB.
Alemparte C.
Saaby S.
Bella M.
Jørgensen AK.
Angew. Chem. Int. Ed.
2005,
44:
2896
7m
Lu C.-D.
Liu H.
Chen Z.-Y.
Hu W.-H.
Mi A.-Q.
Org. Lett.
2005,
7:
83
7n
Hamashima Y.
Sasamoto N.
Hotta D.
Somei H.
Umebayashi N.
Sodeoka M.
Angew. Chem. Int. Ed.
2005,
44:
1525
8a
Falborg L.
Jørgensen AK.
J. Chem. Soc., Perkin Trans. 1
1996,
2823
8b
Sibi MP.
Shay JJ.
Liu M.
Jasperse CP.
J. Am. Chem. Soc.
1998,
120:
6615
8c
Zhuang W.
Hazell RG.
Jørgensen AK.
Chem. Commun.
2001,
1240
8d
Cardillo G.
Gentilucci L.
Matteis VD.
J. Org. Chem.
2002,
67:
5957
8e
Sibi MP.
Gorikunti U.
Liu M.
Tetrahedron
2002,
58:
8357
8f
Wabnitz TC.
Spencer JB.
Org. Lett.
2003,
5:
2141
8g
Xu LW.
Xia CG.
Eur. J. Org. Chem.
2005,
633
8h
Prieto A.
Fernandez R.
Lassaletta JM.
Vazquez J.
Alvarez E.
Tetrahedron
2005,
61:
4609
8i
Kantam ML.
Neeraja V.
Kavita B.
Neelima B.
Chandhuri MK.
Hussain S.
Adv. Synth. Catal.
2005,
347:
763
8j
Verma AK.
Kumar R.
Chaudhary P.
Saxena A.
Sharkar R.
Mozamdar S.
Chandra R.
Tetrahedron Lett.
2005,
46:
5229
9 The bidentate-type substrate was known to produce a good enantioselectivity for the reaction using rare-earth Lewis acids,
[14]
and the corresponding product, the β-amino-3-acyloxazolidin-2-one derivative, could be easily transformed into more useful compounds.
If this reaction was carried out without MS 4 Å, the enantioselectivity of both products decreased [4a; 38% ee (S), 5a; 24% ee (S)]. The effect of molecular sieves has been reported. For examples see:
10a
Gothelf VK.
Hazell GR.
Jørgensen AK.
J. Org. Chem.
1996,
61:
346
10b
Kodama H.
Ito J.
Hori K.
Ohta T.
Furukawa I.
J. Organomet. Chem.
2000,
603:
6
10c
Suga H.
Inoue K.
Inoue S.
Kakehi A.
J. Am. Chem. Soc.
2002,
124:
14836
10d
Liang G.
Trauner D.
J. Am. Chem. Soc.
2004,
126:
9544
11 The reason of this phenomenon was thought to be the failure of the regeneration of the complex between Sc(OTf)3 and i-Pr-pybox at cold temperatures.
12
Typical Procedures (Table 2).
Under a nitrogen atmosphere, to the suspension of Sc(OTf)3 (10.34 mg, 0.021 mmol) and MS 4 Å (75 mg), which were predried at 180 °C for 3 h under reduced pressure, in CH2Cl2 (5 mL) was added pybox (1a, 6.95 mg, 0.023 mmol) in CH2Cl2 (3 mL) at 0 °C. After stirring for 0.5 h, a solution of 3-crotonoyloxazolidin-2-one (2, 63.61 mg, 0.41 mmol) in CH2Cl2 (3 mL) was added and stirred for an additional 0.5 h. Then, O-benzylhydroxylamine (3, 0.45 mmol), which was used as a CH2Cl2 solution (0.5 M, 0.9 mL, 0.45 mmol), was slowly added dropwise at the same temperature. After 1 h, the reaction was quenched with sat. aq Na2CO3 and the mixture was extracted with CH2Cl2. The combined organic layer was dried over Na2SO4. This organic layer was filtered and evaporated under reduced pressure. The residue was purified by recycling preparative HPLC (GPC column, CHCl3 as eluent) to give the desired products. The enantioselectivity was determined by an HPLC analysis using a chiral column: Chiralpak AD (0.46 cm × 25 cm).
Compound 4a: 1H NMR (300 MHz, CDCl3): δ = 1.17 (d, 3 H, J = 6.45 Hz), 2.87 (dd, 1 H, J = 4.71 Hz, 16.4 Hz), 3.21 (dd, 1 H, J = 8.22 Hz, 16.4 Hz), 3.58-3.67 (m, 1 H), 4.19-4.33 (m, 2 H), 4.67 (s, 2 H), 5.77 (s, 1 H), 7.28-7.37 (m, 5 H). 13C NMR (300 MHz, CDCl3): δ = 18.1, 39.4, 42.2, 52.9, 61.8, 76.3, 127.6, 128.2, 128.3, 137.6, 153.5, 171.9.
Compound 5a: 1H NMR (300 MHz, CDCl3): δ = 1.09 (d, 3 H, J = 6.45 Hz), 2.31 (dd, 1 H, J = 4.08 Hz, 15.2 Hz), 2.36 (dd, 1 H, J = 4.71 Hz, 15.8 Hz), 3.29-3.38 (m, 1 H), 4.52 (s, 2 H), 4.88 (s, 2 H), 5.39 (s, 1 H), 7.24-7.37 (m, 10 H), 9.08 (s, 1 H). 13C NMR (300 MHz, CDCl3): δ = 17.7, 37.7, 52.7, 76.3, 77.9, 128.0, 128.3, 128.4, 128.6, 128.7, 129.1, 135.6, 137.3, 169.2.
13a
Nishiyama H.
Kondo M.
Nakamura T.
Itoh K.
Organometallics
1991,
10:
500
13b
Davies IW.
Gerena L.
Lu N.
Larsen RD.
Reider PJ.
J. Org. Chem.
1996,
61:
9629
14a
Ho G.-J.
Mathre DJ.
J. Org. Chem.
1995,
60:
2271
14b
Evans DA.
Miller SJ.
Leckta T.
von Matt P.
J. Am. Chem. Soc.
1999,
121:
7559
14c
Evans DA.
Scheidt KA.
Johnston JN.
Willis MC.
J. Am. Chem. Soc.
2001,
123:
4480