Subscribe to RSS
DOI: 10.1055/s-2006-939073
Efficient and Green Access to Functionalized and Highly Constrained Heteropolycyclic Derivatives via a Microwave-Accelerated Diels-Alder Cycloaddition and Heterogeneous Hydrogenation Sequence
Publication History
Publication Date:
24 April 2006 (online)
Abstract
This paper describes an efficient and green access to functionalized and highly constrained heteropolycyclic derivatives via a microwave-accelerated cycloaddition and heterogeneous hydrogenation sequence.
Key words
microwave - cycloadditions - hydrogenation - heterogeneous catalysis - rhodium
-
1a
Sheldon RA. Green Chem. 2005, 7: 267 -
1b
Matlack A. Green Chem. 2003, 5: G7 -
1c
Trost BM. Acc. Chem. Res. 2002, 35: 695 -
1d
Anastas PN.Kirchhoff MM. Acc. Chem. Res. 2002, 35: 686 -
1e
Trost BM.Toste DF.Pinkerton AB. Chem. Rev. 2001, 101: 2067 -
2a
Microwaves in Organic Synthesis
Loupy A. Wiley-VCH; Weinheim: 2002. -
2b
Hayes BL. Microwave Synthesis: Chemistry at the Speed of Light CEM Publishing; Matthews, NC: 2002. -
2c
Lidström P.Tierney J.Wathey B.Westman J. Tetrahedron 2001, 42: 9225 -
2d
Varma RS. Green Chem. 1999, 1: 43 -
2e
Kappe CO. Angew. Chem. Int. Ed. 2004, 43: 6250 -
2f
de la Hoz A.Díaz-Ortiz A.Moreno A. Chem. Soc. Rev. 2005, 34: 164 -
3a
Li C.-J. Chem. Rev. 2005, 105: 3095 ; and references cited therein -
3b
Scherrmann MC.Norsikian S.Lubineau A. Adv. Org. Synth. 2005, 1: 341 -
3c
Lubineau A.Augé J. Top. Curr. Chem. 1999, 206: 1 -
3d
Akiya N.Savage PE. Chem. Rev. 2002, 102: 2725 -
3e
Lindström UM. Chem. Rev. 2002, 102: 2751 - For selected microwave reactions in water, see:
-
4a
An J.Bagnell L.Cablewski T.Strauss CR.Trainor RW. J. Org. Chem. 1997, 62: 2505 -
4b
Leadbeater NE.Marco M. Angew. Chem. Int. Ed. 2003, 42: 1407 -
4c
Arvella RK.Leadbeater NE. Org. Lett. 2005, 7: 2101 -
4d
Ju Y.Varma RS. Org. Lett. 2005, 7: 2409 -
4e
Miyazawa A.Tanaka K.Sakakura T.Tashiro M.Tashiro H.Prakash GKS.Olah GA. Chem. Commun. 2005, 2104 -
4f
Ju Y.Varma RS. Tetrahedron Lett. 2005, 46: 6011 -
4g
Martelanc M.Kranjc K.Polanc S.Kočevar M. Green Chem. 2005, 7: 737 -
4h
Kremsner JM.Kappe CO. Eur. J. Org. Chem. 2005, 3672 -
5a
Cornils B.Herrmann WA. Aqueous-Phase Organometallic Catalysis Wiley-VCH; New York: 1998. -
5b
Cornils B.Herrmann WA. In Applied Homogeneous Catalysis with Organometallic Compounds VCH; New York: 1996. -
6a
Burnier G.Schwager L.Vogel P. Helv. Chim. Acta 1986, 69: 1310 -
6b
Atzkern H.Koehler FH.Müller R. Z. Naturforsch., B: Chem. Sci. 1990, 45: 329 -
6c
Iordache F.Chiraleu F.Stanescu L.Badea F.Avram M. Rev. Roum. Chim. 1986, 31: 261 -
6d
Deutsch HM.Gelbaum LT.McLaughlin M.Fleischmann TJ.Earnhart LL.Haugwitz RD.Zalkow LH. J. Med. Chem. 1986, 29: 2164 -
6e
Osawa E.Tahara Y.Togashi A.Iizuka T.Tanaka N.Kan T.Farcasiu D.Kent GJ.Engler EM.von R. Schleyer P. J. Org. Chem. 1982, 47: 1923 -
6f
Zhubanov BA.Almabekov OA.Shpil’man NY. Izv. Akad. Nauk Kaz. SSR, Ser. Khim. 1979, 68 -
7a
Afarinkia K.Vinader V.Nelson TD.Posner GH. Tetrahedron 1992, 48: 9111 -
7b
Woodard BT.Posner GH. In Advances in Cycloaddition Vol. 5:Harmata M. JAI Press Inc.; Greenwich: 1999. p.47-83 -
7c
Shusherina NP. Russ. Chem. Rev. 1974, 43: 851 - For the synthesis of 1a-d, see:
-
8a
Kepe V.Kočevar M.Polanc S.Verček B.Tišler M. Tetrahedron 1990, 46: 2081 -
8b
Kepe V.Kočevar M.Petrič A.Polanc S.Verček B. Heterocycles 1992, 33: 843 -
8c
Kranjc K.Leban I.Polanc S.Kočevar M. Heterocycles 2002, 58: 183 -
9a
Ješelnik M.Varma RS.Polanc S.Kočevar M. Chem. Commun. 2001, 1716 -
9b
Ješelnik M.Varma RS.Polanc S.Kočevar M. Green Chem. 2002, 4: 35 -
9c
Kranjc K.Polanc S.Kočevar M. Org. Lett. 2003, 5: 2833 -
9d
Kranjc K.Štefane B.Polanc S.Kočevar M. J. Org. Chem. 2004, 69: 3190 -
9e
Kranjc K.Kočevar M. New J. Chem. 2005, 29: 1027 - 11
Kende AS.Lan J.Arad D. Tetrahedron Lett. 2002, 43: 5237 ; and references cited therein -
12a
Choudary BM.Kantam ML.Reddy NM.Gupta NM. Catal. Lett. 2002, 82: 79 -
12b
Choudary BM.Kavita B.Chowdari N.Sreedhar B.Kantam M. Catal. Lett. 2002, 78: 373 -
12c
Huang J.Jiang T.Han B.Mu T.Wang Y.Li X.Chen H. Catal. Lett. 2004, 98: 225 -
13a
TPPTS = trisodium salt of 3,3′,3′′-phosphanetriyl benzenesulfonic acid
-
13b
Kuntz EG. CHEMTECH 1987, 570 -
13c
Herrmann WA.Kulpe JA.Kellner J.Riepl H.Bahrmann H.Konkol W. Angew. Chem., Int. Ed. Engl. 1990, 29: 391 -
13d
Michelet V.Savignac M.Genêt J.-P. Electronic Encyclopedia of Reagents for Organic SynthesisPaquette L.Fuchs P.Crich D.Wipf P. John Wiley & Sons; New York: 2004. -
14a
TPPTC = trilithium salt of 3,3′,3′′-phosphanetriyl benzenecarboxylic acid
-
14b
Amengual R.Genin E.Michelet V.Savignac M.Genêt J.-P. Adv. Synth. Catal. 2002, 344: 393 -
14c
Genin E.Amengual R.Michelet V.Savignac M.Jutand A.Neuville L.Genêt J.-P. Adv. Synth. Catal. 2004, 346: 1733 -
14d
Genin E.Michelet V.Genêt J.-P. J. Organomet. Chem. 2004, 689: 3820 -
14e
Genin E.Michelet V.Genêt J.-P. Tetrahedron Lett. 2004, 45: 4157 - 16
Hsueh H.-B.Chen C.-Y. Polymer 2003, 44: 1151
References and Notes
Microwave Irradiation Procedure: A mixture of 2H-pyran-2-one 1 (1 mmol) and N-substituted maleimide 2 (2.1 mmol) in distilled water (3 mL) was irradiated with microwaves (CEM Discover) for the time specified (final temperature 150 °C, power 100 W, ramp time 3 min). The temperature of the reaction was reduced to r.t.; the precipitated solid was filtered off and washed with water (0.5-1 mL). The anhydrous procedure was identical,
only no solvent was used.
N
-[9-Acetyl-1,2,3,3a,4,4a,5,6,7,7a,8,8a-dodecahydro-8-methyl-1,3,5,7-tetraoxo-4,8-ethenobenzo[1,2-
c
:4,5-
c
′]dipyrrol
-4-yl]benzamide (
3a). Mp > 358 °C (EtOH); IR (KBr): 1769, 1715, 1692, 1671, 1537 cm-1; 1H NMR (DMSO-d
6): δ = 1.86 (s, 3 H, Me), 2.15 (s, 3 H, COMe), 2.99 (d, 2 H, J = 8.3 Hz, 7a-H, 8a-H), 4.24 (d, 2 H, J = 8.3 Hz, 3a-H, 4a-H), 7.36 (s, 1 H, 10-H), 7.53 (m, 3 H, Ph), 7.89 (m, 2 H, Ph), 8.69 (s, 1 H, NHCOPh), 11.15 (s, 2 H, 2 × NH); 13C NMR (DMSO-d
6): δ = 18.1, 27.7, 41.0, 44.1, 50.3, 57.6, 127.5, 128.1, 131.1, 135.3, 138.8, 142.5, 167.4, 175.7, 177.0, 196.2; MS: m/z (%) = 421 (M+, 5), 105 (100); HRMS: m/z calcd for C22H19N3O6: 421.1273; found: 421.1262; Anal. Calcd for C22H19N3O6·0.8H2O: C, 60.63; H, 4.76; N, 9.64. Found: C, 60.74; H, 4.84; N, 9.29.
N
-[8-Acetyl-1,2,3,3a,4,4a,5,6,7,7a,8,8a-dodecahydro-2,6,8-trimethyl-1,3,5,7-tetraoxo-4,8-ethenobenzo[1,2-
c
: 4,5-
c
′]dipyrrol
-4-yl]benzamide (
3b). Mp 294-296 °C (EtOH); IR (KBr): 1767, 1697, 1679, 1661, 1540 cm-1; 1H NMR (DMSO-d
6): δ = 1.90 (s, 3 H, Me), 2.08 (s, 3 H, COMe), 2.69 (s, 6 H, 2 × Me), 3.11 (d, 2 H, J = 8.2 Hz, 7a-H, 8a-H), 4.31 (d, 2 H, J = 8.2 Hz, 3a-H, 4a-H), 7.20 (s, 1 H, 10-H), 7.56 (m, 3 H, Ph), 7.91 (m, 2 H, Ph), 8.75 (s, 1 H, NH); 13C NMR (DMSO-d
6): δ = 18.2, 24.3, 27.9, 41.2, 43.0, 49.0, 57.7, 127.5, 128.1, 131.2, 135.3, 138.1, 142.4, 167.7, 174.3, 175.5, 196.3; MS: m/z (%) = 449 (M+, 15), 105 (100); Anal. Calcd for C24H23N3O6·EtOH: C, 63.02; H, 5.90; N, 8.48. Found: C, 62.66; H, 5.55; N, 8.68.
The Rh precursor [Rh(cod)Cl]2 (0.25 mmol metal) and TPPTS or m-TPPTC ligand (1 mmol) were dissolved in deionized water (50 mL) and stirred for 12 h. After stirring, LDH (0.5 g) was added to the solution, and the resulting solution was stirred for 24 h. The solution was filtered, the solid was washed with deionized water, and dried under vacuum at r.t. The catalysts structures and the chemical composition were confirmed by XRD analysis and XPS spectroscopy.
17
Catalyst Tests; General Procedure. The tests were performed in a stirred stainless-steel autoclave using H2 pressures in the range 20-40 atm, catalyst (30 mg), and substrate 3 (30 mg) at different temperatures. All experiments were carried out in EtOAc. The reaction products were analyzed on a Knauer HPLC equipped with a chiral column EC 150/4 RESOLVOSIL BSA-7, UV-VIS detectors [MeCN-H3PO4 (0.1%), 1:3].
N
-[9-Acetyl-1,2,3,3a,4,4a,5,6,7,7a,8,8a-dodecahydro-8-methyl-1,3,5,7-tetraoxo-4,8-ethanobenzo[1,2-
c
:4,5-
c
′]dipyrrol
-4-yl]benzamide (
4a). 1H NMR (DMSO-d
6): δ = 1.66 (s, 3 H, Me), 1.90 (s, 3 H, COMe), 2.14 (d, 2 H, J = 6.4 Hz, 10-H), 2.42 (t, 1 H, J = 6.4 Hz, 9-H) 2.90 (d, 2 H, J = 8.1 Hz, 7a-H, 8a-H), 4.15 (d, 2 H, J = 8.1 Hz, 3a-H, 4a-H), 7.55 (m, 3 H, Ph), 7.90 (m, 2 H, Ph), 8.50 (s, 1 H, NHCOPh), 11.10 (s, 2 H, 2 × NH); 13C NMR (DMSO-d
6): δ = 18.0, 27.2, 32.4, 41.0, 41.8, 43.9, 49.7, 57.3, 127.6, 128.1, 131.3, 135.6, 167.9, 174.2, 175.6, 192.1; Anal. Calcd for C22H21N3O6: C, 62.41; H, 5.00; N, 9.92. Found: C, 62.53; H, 4.94; N, 9.90.
N
-[9-Acetyl-1,2,3,3a,4,4a,5,6,7,7a,8,8a-dodecahydro-2,6,8-trimethyl-1,3,5,7-tetraoxo-4,8-ethanobenzo[1,2-
c
:4,5-
c
′]dipyrrol
-4-yl]benzamide (
4b). 1H NMR (DMSO-d
6): δ = 1.69 (s, 3 H, Me), 1.83 (s, 3 H, COMe), 2.09 (d, 2 H, J = 6.6 Hz, 10-H), 2.40 (t, 1 H, J = 6.6 Hz, 9-H) 2.75 (s, 6 H, 2 × Me), 2.98 (d, 2 H, J = 8.1 Hz, 7a-H, 8a-H), 4.22 (d, 2 H, J = 8.1 Hz, 3a-H, 4a-H), 7.57 (m, 3 H, Ph), 7.89 (m, 2 H, Ph), 8.53 (s, 1 H, NHCOPh); 13C NMR (DMSO-d
6): δ = 17.9, 24.2, 27.5, 32.9, 40.8, 41.5, 44.2, 48.5, 56.6, 127.4, 128.0, 131.3, 135.1, 167.0, 173.5, 175.1, 190.1. Anal. Calcd for C24H25N3O6: C, 63.85; H, 5.58; N, 9.31. Found: C, 63.50; H, 5.55; N, 9.08.
N
-[1,2,3,3a,4,4a,5,6,7,7a,8,8a-dodecahydro-9-(1-hydroxyethyl)-2,6,8-trimethyl-1,3,5,7-tetraoxo-4,8-ethenobenzo[1,2-
c
:4,5-
c
′]dipyrrol
-4-yl]benzamide (
5b). 1H NMR (DMSO-d
6): δ = 1.23 (d, 3 H, J = 6.8 Hz, CH
3CHOH), 1.83 (s, 3 H, Me), 2.72 (s, 6 H, 2 × Me), 2.80 (s, 1 H, OH), 3.01 (d, 2 H, J = 8.1 Hz, 7a-H, 8a-H), 4.06 (q, 1 H, J = 6.8 Hz, CHOH), 4.29 (d, 2 H, J = 8.1 Hz, 3a-H, 4a-H), 6.71 (s, 1 H, 10-H), 7.55 (m, 3 H, Ph), 7.90 (m, 2 H, Ph), 8.74 (s, 1 H, NHCOPh); 13C NMR (DMSO-d
6): δ = 18.1, 24.1, 24.5, 40.9, 42.7, 50.1, 57.4, 74.6, 127.5, 128.1, 131.0, 135.2, 138.0, 143.7, 167.6, 174.8, 176.6. Anal. Calcd for C24H25N3O6: C, 63.85; H, 5.58; N, 9.31. Found: C, 64.04; H, 5.97; N, 9.68.