References and Notes
1a
Pearson WH.
Bergmeier SC.
Chytra JA.
Synthesis
1990,
156
1b
Dulcere JP.
Tawil M.
Santelli M.
J. Org. Chem.
1990,
55:
571
1c
Pearson WH.
Bergmeier SC.
Degan S.
Lin KC.
Poon YF.
Schkeryantz JM.
Williams JP.
J. Org. Chem.
1990,
55:
5719
1d
Marco-Contelles J.
Rodríguez-Fernández M.
J. Org. Chem.
2001,
66:
3717
2
Marei MG.
El-Ghanam M.
Salem MM.
Bull. Chem. Soc. Jpn.
1994,
67:
144
3a
Mukai C.
Kobayashi M.
Kubota S.
Takahashi Y.
Kitagaki S.
J. Org. Chem.
2004,
69:
2128
3b
Guerin DJ.
Miller SJ.
J. Am. Chem. Soc.
2002,
124:
2134
4a
Rostovtsev VV.
Green LG.
Fokin VV.
Sharpless KB.
Angew. Chem. Int. Ed.
2002,
41:
2596
4b
Feldman AK.
Colasson B.
Fokin VV.
Org. Lett.
2004,
6:
3897
4c
Appukkuttan P.
Dehaen W.
Fokin VV.
Van der Eycken E.
Org. Lett.
2004,
6:
4223
4d
Kacprzak K.
Synlett
2005,
943
4e
Akula RA.
Temelkoff DP.
Artis ND.
Norris P.
Heterocycles
2004,
63:
2719
5a
Huang X.
Chen WL.
Zhou HW.
Synlett
2004,
329
5b
Huang X.
Zhou H.
Chen W.
J. Org. Chem.
2004,
69:
839
5c
Chen W.
Huang X.
Zhou H.
Synthesis
2004,
1573
5d
Zhou H.
Huang X.
Chen W.
J. Org. Chem.
2004,
69:
5471
5e
Chen W.
Huang X.
Zhou H.
Ren L.
Synthesis
2006,
609
5f For synthesis of MCPs, see: Brandi A.
Goti A.
Chem. Rev.
1998,
98:
589
For recent reviews, see:
5g
Nakamura I.
Yamamoto Y.
Adv. Synth. Catal.
2002,
344:
111
5h
Brandi A.
Cicchi S.
Cordero FM.
Goti A.
Chem. Rev.
2003,
103:
1213
5i
Nakamura E.
Yamago S.
Acc. Chem. Res.
2002,
35:
867
See also:
5j
Nakamura I.
Oh BH.
Saito S.
Yamamoto Y.
Angew. Chem. Int. Ed.
2001,
40:
1298
5k
Oh BH.
Nakamura I.
Saito S.
Yamamoto Y.
Tetrahedron Lett.
2001,
42:
6203
5l
Camacho DH.
Nakamura I.
Saito S.
Yamamoto Y.
J. Org. Chem.
2001,
66:
270
5m
Yamago S.
Nakamura E.
J. Org. Chem.
1990,
55:
5553
5n
Yamago S.
Yanagawa M.
Nakamura E.
Chem. Lett.
1999,
879
5o
Lautens M.
Han W.
Liu JH.-C.
J. Am. Chem. Soc.
2003,
125:
4028
5p
Shi M.
Chen Y.
Xu B.
Org. Lett.
2003,
5:
1225
5q
Shi M.
Xu B.
Tetrahedron Lett.
2003,
44:
3839
5r
Chen Y.
Shi M.
J. Org. Chem.
2004,
69:
426
6
Zhou HW.
Huang X.
Chen WL.
Synlett
2003,
2080
7a
Shi M.
Shao L.-X.
Synlett
2004,
807
7b
Shi M.
Liu LP.
Tang J.
Org. Lett.
2005,
7:
3085
8
Typical Procedure for the Synthesis of 5.
To a stirred 95% EtOH (2 mL) solution of NaN3 (0.6 mmol), 2 (0.5 mmol) was added and the reaction mixture was stirred under reflux until the reaction was complete, as monitored by TLC. Then, H2O (4 mL), ascorbic acid (0.1 g, 0.56 mmol), NaOH (0.022 g, 0.56 mmol), CuSO4 (0.01 g, 0.04 mmol), and alkyne 4 (0.6 mmol) were added and heated together at 70 °C until the reaction was complete (monitored by TLC). Afterwards, the mixture was cooled to r.t. and H2O (15 mL) was added. The aqueous layer was extracted with EtOAc (3 × 15 mL). The organic layer was dried over anhyd MgSO4. After evaporation, the residue was subjected to preparative TLC (eluent: PE-EtOAc, 1:6 to 1:3) to afford 1,4-disub-stituted 1,2,3-triazoles 5.
Selected Spectral Data for 5a.
Solid, mp 70-72 °C. 1H NMR (400 MHz, CDCl3): δ = 0.95 (t, 3 H, J = 7.33 Hz), 1.39-1.44 (m, 2 H), 1.64-1.71 (m, 2 H), 2.74 (t, 2 H, J = 7.66 Hz), 3.08 (t, 2 H, J = 6.41 Hz), 4.58 (t, 2 H, J = 6.41 Hz), 6.75 (dd, 2 H, J = 1.75, 7.79 Hz), 7.10-7.32 (m, 9 H). 13C NMR (100 MHz, CDCl3): δ = 152.17, 148.27, 146.08, 139.29, 128.50, 128.24, 127.91, 127.60, 127.56, 121.04, 102.68, 49.67, 42.45, 31.77, 25.32, 22.35, 13.85. IR: 2955, 2926, 1437, 1043, 701 cm-1.
9 The temperature (70 °C) is required for the triazole synthesis step in our reaction by trial and error. At higher temperature 1,5-regioisomers can be formed and at lower temperature the reaction was not complete after several hours.
10a
Heck RF.
J. Am. Chem. Soc.
1968,
90:
5518
10b
Tsuji J.
Palladium Reagents and Catalysts
Wiley;
New York:
1995.
Reviews:
10c
de Meijere A.
Meyer FE.
Angew. Chem., Int. Ed. Engl.
1994,
33:
2379
10d
Cabri W.
Candiani I.
Acc. Chem. Res.
1995,
28:
2
10e
Crisp GT.
Chem. Soc. Rev.
1998,
27:
427
10f
Geret JP.
Savignac MJ.
J. Organomet. Chem.
1999,
576:
305
10g
Beletskaya IP.
Cheprakov AV.
Chem. Rev.
2000,
100:
3009
10h For a recent mechanistic study on Heck-type reaction see: Amatorc C.
Jutand A.
J. Organomet. Chem.
1999,
576:
254
11
Typical Procedure for the Synthesis of 6.
Compound 5 (0.25 mmol), Pd(OAc)2 (0.025 mmol), tetrabutylammonium chloride (TBAC, 0.25 mmol), NaHCO3 (0.5 mmol), and N,N-dimethylformamide (DMF, 1 mL) were added into a Schlenk tube at r.t. The reaction mixture was stirred at 100 °C until the reaction was complete, as monitored by TLC. Then the reaction mixture was cooled and H2O (15 mL) was added. The aqueous layer was extracted with EtOAc (3 ¥ 15 mL). The organic layer was dried over anhyd MgSO4. After evaporation, the residue was subjected to preparative TLC (eluent: PE-EtOAc, 1:6 to 1:3) to afford 4-alkylidene-5,6-dihydro-4H-pyrrolo-[1,2-c][1,2,3]-triazoles 6.
Selected Data.
Compound 6a: solid, mp 124-126 °C. IR: 2948, 2924, 1440, 764, 703 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.74 (t, 3 H, J = 7.26 Hz), 0.92-1.00 (m, 2 H), 1.20-1.28 (m, 2 H), 1.49 (t, 2 H, J = 7.45 Hz), 3.51 (t, 2 H, J = 6.89 Hz), 4.36 (t, 2 H, J = 6.89 Hz), 7.18-7.38 (m, 10 H). 13C NMR (100 MHz, CDCl3): δ = 141.97, 141.94, 141.30, 138.43, 137.67, 129.92, 129.18, 128.72, 128.21, 127.86, 127.70, 123.51, 45.24, 37.50, 31.62, 25.35, 22.28, 13.76. MS (EI, 70 eV): m/z (%) = 329 (19) [M+]. Anal. Calcd for C22H23N3: C, 80.21; H, 7.04; N, 12.76. Found: C, 80.00; H, 7.16; N, 12.83.
Compound 7a: solid, mp 126-128 °C. IR: 2926, 1486, 1086, 828 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.91 (t, 3 H, J = 7.33 Hz), 1.34-1.40 (m, 2 H), 1.61-1.68 (m, 2 H), 2.73 (t, 2 H, J = 7.58 Hz), 2.99 (t, 2 H, J = 6.71 Hz), 4.54 (t, 2 H, J = 6.71 Hz), 7.27 (s, 4 H), 7.40 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 148.35, 134.24, 132.75, 128.61, 121.27, 120.96, 86.01, 82.23, 48.65, 31.55, 25.28, 22.22, 21.63, 13.78. MS (EI, 70 eV): m/z (%) = 287 (29.08) [M+]. Anal. Calcd for C16H18ClN3: C, 66.78; H, 6.30; N, 14.60. Found: C, 66.90; H, 6.21; N, 14.65.