References and Notes
1a
Kinnel R.
Gehrken H.-P.
Swali R.
Skoropowski G.
Scheuer PJ.
J. Org. Chem.
1998,
63:
3281 ; the isolation and structural determination of these natural products were reported earlier in a preliminary communication
1b
Kinnel RB.
Gehrken HP.
Scheuer PJ.
J. Am. Chem. Soc.
1993,
115:
3376
For excellent reviews of the synthetic efforts towards this family, see:
2a
Hoffmann H.
Lindel T.
Synthesis
2003,
1753
2b For a current review of synthetic approaches toward palau’amine, see: Jacquot DEN.
Lindel T.
Curr. Org. Chem.
2005,
9:
1551
3
Overman LE.
Rogers BN.
Tellow JE.
Trenkle WC.
J. Am. Chem. Soc.
1997,
119:
7159 ; additional reports have appeared from this group describing additional studies toward this group of targets - see ref. 18
4
McAlpine IJ.
Armstrong RW.
J. Org. Chem.
1996,
61:
5674
For isolation see:
5a
Forenza L.
Minale R.
Riccio R.
Fattorusso E.
J. Chem. Soc., Chem. Commun.
1971,
1129
5b For a structure correction and synthesis, see: Garcia EE.
Benjamin LE.
Fryer RI.
J. Chem. Soc., Chem. Commun.
1973,
78
6a
Ahond A.
Zurita MB.
Colin M.
Fizames C.
Laboute P.
Lavelle F.
Laurent D.
Poupat C.
Pusset J.
C. R. Acad. Sci.
1988,
307:
145
For total syntheses, see:
6b
Bedoya Zurita M.
Ahond A.
Poupat C.
Potier P.
Tetrahedron
1989,
45:
6713
6c
Commercon A.
Paris JM.
Tetrahedron Lett.
1991,
32:
4905
6d
Commercon A.
Gueremy C.
Tetrahedron Lett.
1991,
32:
1419
For isolation, see:
7a
Sharma G.
Magdoff-Fairchild B.
J. Org. Chem.
1977,
42:
4188
For total syntheses, see:
7b
Foley LH.
Büchi G.
J. Am. Chem. Soc.
1982,
104:
1176
7c
Wiese KJ.
Yakushijin K.
Horne DA.
Tetrahedron Lett.
2002,
43:
5135
7d
Poullennec KG.
Romo D.
J. Am. Chem. Soc.
2003,
125:
6344
7e
Chung R.
Yu E.
Incarvito CD.
Austin DJ.
Org. Lett.
2004,
6:
3881
7f
Feldman KS.
Skoumbourdis AP.
Org. Lett.
2005,
7:
929
7g
Jacquot DEN.
Zöllinger M.
Lindel T.
Angew. Chem. Int. Ed.
2005,
44:
2295
For isolation, see:
8a
de Nanteuil G.
Ahond A.
Guilheim J.
Poupat C.
Dau ETH.
Potier P.
Tetrahedron
1985,
41:
6019
8b
Fedoreyev SA.
Utkina NK.
Ilyin SG.
Reshetnyak MV.
Maximov OB.
Tetrahedron Lett.
1986,
27:
3177
8c For total synthesis, see: ref. 7c.
For isolation, see:
9a
Walker RP.
Faulkner DJ.
Van Engen D.
Clardy J.
J. Am. Chem. Soc.
1981,
103:
6772
For total syntheses, see:
9b
Baran PS.
Zografos AL.
O’Malley DP.
J. Am. Chem. Soc.
2004,
126:
3726
9c
Birman VB.
Jiang X.-T.
Org. Lett.
2004,
6:
2369
For isolation, see:
10a
Kobayashi J.
Tsuda M.
Murayama T.
Nakamura H.
Ohizumi Y.
Ishibashi M.
Iwamura M.
Ohta T.
Nozoe S.
Tetrahedron
1990,
46:
5579
10b
Keifer PA.
Schwartz RE.
Koker MES.
Hughes RG.
Rittschof D.
Rinehart KL.
J. Org. Chem.
1991,
56:
2965
10c
Williams DH.
Faulkner DJ.
Tetrahedron
1996,
52:
5381
10d For total synthesis, see: Baran PS.
O’Malley DP.
Zografos AL.
Angew. Chem. Int. Ed.
2004,
43:
2674
10e Dimethyl ageliferin: Kawasaki I.
Sakaguchi N.
Fukushima N.
Fujioka N.
Nikaido F.
Yamashita M.
Ohta S.
Tetrahedron Lett.
2002,
43:
4377
11
Kobayashi J.
Suzuki M.
Tsuda M.
Tetrahedron
1997,
53:
15681
12
Endo T.
Tsuda M.
Okada T.
Mitsuhashi S.
Shima H.
Kikuchi K.
Mikami Y.
Fromont J.
Kobayashi J.
J. Nat. Prod.
2004,
67:
1262
13
Urban S.
de Almeida Leone P.
Carroll AR.
Fechner GA.
Smith J.
Hooper JNA.
Quinn RJ.
J. Org. Chem.
1999,
64:
731
14
Nishimura S.
Matsunaga S.
Shibazaki M.
Suzuki K.
Furihata K.
van Soest RWM.
Fusetani N.
Org. Lett.
2003,
5:
2255
For isolation, see:
15a
Tsukamoto S.
Kato H.
Hirota H.
Fusetani N.
J. Nat. Prod.
1996,
59:
501
15b For total synthesis, see: Olofson A.
Yakushijin K.
Horne DA.
J. Org. Chem.
1997,
62:
7918
16 This biosynthetic proposal was suggested by a reviewer of ref. 1a.
17
Al Mourabit A.
Potier P.
Eur. J. Org. Chem.
2001,
237
18a
Belanger G.
Hong F.-T.
Overman LE.
Rogers BN.
Tellow JE.
Trenkle WC.
J. Org. Chem.
2002,
67:
7880
18b
Katz JD.
Overman LE.
Tetrahedron
2004,
60:
9559
19
Starr JT.
Koch G.
Carreira EM.
J. Am. Chem. Soc.
2000,
122:
8793
20a
Dilley AS.
Romo D.
Org. Lett.
2001,
3:
1535
20b
Dransfield PJ.
Wang S.
Dilley A.
Romo D.
Org. Lett.
2005,
7:
1679
21
Koenig SG.
Miller SM.
Leonard KA.
Lowe RS.
Chen BC.
Austin DJ.
Org. Lett.
2003,
5:
2203
22
Garrido-Hernandez H.
Nakadai M.
Vimolratana M.
Li Q.
Doundoulakis T.
Harran PG.
Angew. Chem. Int. Ed.
2005,
44:
765
23a
Yamazaki C.
Katayama K.
Suzuki K.
J. Chem. Soc., Perkin Trans. 1
1990,
3085
23b
Kosaka K.
Maruyama K.
Nakamura H.
Ikeda M.
J. Heterocycl. Chem.
1991,
28:
1941
23c
Wuonola MA.
Smallheer JM.
Tetrahedron Lett.
1992,
33:
5697
23d
Xu Y.-Z.
Yakushijin K.
Horne DA.
Tetrahedron Lett.
1993,
34:
6981
23e
Neipp C.
Ranslow PB.
Wan Z.
Snyder JK.
Tetrahedron Lett.
1997,
38:
7499
23f
Wan Z.
Snyder JK.
Tetrahedron Lett.
1997,
38:
7495
23g
Dang Q.
Liu Y.
Erion MD.
J. Am. Chem. Soc.
1999,
121:
5833
23h
Wan Z.-K.
Woo GHC.
Snyder JK.
Tetrahedron
2001,
57:
5497
23i
Lahue BR.
Wan Z.-K.
Snyder JK.
J. Org. Chem.
2003,
68:
4345
23j
Lahue BR.
Lo S.-M.
Wan ZK.
Woo GHC.
Snyder JK.
J. Org. Chem.
2004,
69:
7171
24
Sepulveda-Arques J.
Abarca-Gonzalez B.
Medio-Simon M.
Adv. Heterocycl. Chem.
1995,
63:
339
For other types of pericyclic reactions involving imidazoles, see:
25a
Begg CG.
Grimmett MR.
Wethey PD.
Aust. J. Chem.
1973,
26:
2435
25b
Commerçon A.
Posinet G.
Tetrahedron Lett.
1990,
31:
3871
25c
Bierer DE.
O’Connell JF.
Parquette JR.
Thompson CM.
Rapoport H.
J. Org. Chem.
1992,
57:
1390
25d
Yashioka H.
Choshi T.
Sugino E.
Hibino S.
Heterocycles
1995,
41:
161
25e
Berlinck RGS.
Britton R.
Piers E.
Lim L.
Roberge M.
Moreira da Rocha R.
Anderson RJ.
J. Org. Chem.
1998,
63:
9850
25f
D’Auria M.
Racioppi R.
J. Photochem. Photobiol., A
1998,
112:
145
26
Walters MA.
Lee MD.
Tetrahedron Lett.
1994,
35:
8307
27
Deghati PYF.
Wanner MJ.
Koomen G.-J.
Tetrahedron Lett.
1998,
39:
4561
28 These authors did not report the isolation (or observation) of the initial adduct.
29 Since the enamine is effectively locked in an s-trans conformation it cannot react further at least as a diene in a Diels-Alder reaction.
30
Overberger CG.
Smith TW.
Macromolecules
1975,
8:
401 ; see also ref. 33
31
Kirk KL.
J. Heterocycl. Chem.
1985,
57:
57
32a
Cliff MD.
Pyne SG.
J. Org. Chem.
1995,
60:
2378
32b
Cliff MD.
Pyne SG.
Tetrahedron
1996,
52:
13703
32c
Cliff MD.
Pyne SG.
J. Org. Chem.
1997,
62:
1023
33a
Kokosa JM.
Szafasz RA.
Tagupa E.
J. Org. Chem.
1983,
48:
3605
33b
Altman J.
Wilchek M.
J. Heterocycl. Chem.
1988,
25:
915
34
Lovely CJ.
Du H.
Dias HVR.
Org. Lett.
2001,
3:
1319
35
Benjes P.
Grimmett R.
Heterocycles
1994,
37:
735
36
Lovely CJ.
Du H.
Dias HVR.
Heterocycles
2003,
60:
1
37
Pilarski B.
Liebigs Ann. Chem.
1983,
1078
38a
Dehmel F.
Abarbri M.
Knochel P.
Synlett
2000,
345
38b
Abarbri M.
Thibonnet J.
Bérillon L.
Dehmel F.
Rottländer M.
Knochel P.
J. Org. Chem.
2000,
65:
4618
38c
Knochel P.
Dohle W.
Gommermann N.
Kneisel F.
Kopp F.
Korn T.
Sapountzis I.
Vu V.
Angew. Chem. Int. Ed.
2003,
42:
4302
39a
Iddon B.
Lim BL.
J. Chem. Soc., Perkin Trans. 1
1983,
735
39b
O’Connell JF.
Parquette J.
Yelle WE.
Wang W.
Rapoport H.
Synthesis
1988,
767
39c
Groziak MP.
Wei L.
J. Org. Chem.
1991,
56:
4296
39d
Kawasaki I.
Yamashita M.
Ohta S.
Chem. Pharm. Bull.
1996,
44:
1831
39e
Carver DS.
Lindell SD.
Saville-Stones EA.
Tetrahedron
1997,
53:
14481
40
He Y.
Chen Y.
Du H.
Schmid LA.
Lovely CJ.
Tetrahedron Lett.
2004,
45:
5529
41 The bis-Diels-Alder adduct was not obtained from reactions involving the N-methyl derivative. We do not have an unequivocal explanation for this outcome; however, it may be related to differences in the size of the N-substituent (methyl vs. benzyl). With the smaller methyl group, reduced steric compression is experienced on aromatizing the enamine adduct 62f and thus this occurs faster to provide either 54f or 55f before oxidation can occur.
42 The bis-Diels-Alder adduct was not obtained in the presence of a radical scavenger (BHT).
43
Du H.
PhD Dissertation
The University of Texas at Arlington;
Arlington, Texas:
2004.
44a Vinylfuran: Kusurkar RS.
Bhosale DK.
Synth. Commun.
1990,
20:
101
44b Vinylpyrrole: Jones RA.
Marriot MTP.
Rosenthal WP.
Arques JS.
J. Org. Chem.
1980,
45:
4515
Vinylthiophene:
44c
Abarca B.
Ballesteros R.
Enriquez E.
Jones G.
Tetrahedron
1987,
43:
269
44d
Abarca B.
Ballesteros R.
Enriquez E.
Jones G.
Tetrahedron
1985,
41:
2435
45
Acheson RM.
Foxton MW.
Abbott PJ.
Mills KR.
J. Chem. Soc. C
1967,
2218
46
Lovely CJ.
Du H.
He Y.
Dias HVR.
Org. Lett.
2004,
6:
735
47
Pirrung MC.
Pei T.
J. Org. Chem.
2000,
65:
2229
48a He, Y.; Lovely, C. J. unpublished results (see also ref. 63).
48b Sivappa, R.; Lovely, C. J. unpublished results.
49 We knew by the time that this chemistry was being investigated that reactions with electrophiles occurred predominantly from the β-face, and thus the chloro moiety would be endo, precisely that required for palau’amine.
50a
Nahm S.
Weinreb SM.
Tetrahedron Lett.
1981,
22:
3815
50b
Oster TA.
Harris TM.
Tetrahedron Lett.
1983,
24:
1851
51
Barrero AF.
Sanchez JF.
Oltra JE.
Teva D.
J. Heterocycl. Chem.
1991,
28:
939
52 In addition to the desired methyl ester a small quantity (ca. 12%) of a diimidazolyl ketone was obtained.
53
Kawasaki I.
Taguchi Y.
Yamashita M.
Ohta S.
Heterocycles
1996,
43:
1375
54a
Cuberes MR.
Moreno-Manas M.
Trius A.
Synthesis
1985,
302
54b
Moreno-Manas M.
Bassa J.
Llado N.
Pleixats R.
Heterocycles
1990,
27:
673
55a The precise role of TMEDA is unknown at this time, however, in its absence mixtures of products derived from reaction at the 2-amino moiety and/or the N3-imidazole nitrogen were obtained. TMEDA has been used previously as an additive in selective introduction of a Boc moiety in 2-aminothiazole derivatives, where a similar selectivity issue arises.
55b Koyanagi K, and Tsucha S. inventors; Jpn. Kokai Tokkyo Koho 93,164,438. Preparation of (alkoxycarbonyl-amino)heterocycles:
; Chem. Abstr. 1995, 122, 265365
55c Koyanagi K, and Tsucha S. inventors; Jpn Kokai Tokkyo Koho 93,164,378. Method for Preparation of N-Heterocyclyl-urethane:
; Chem. Abstr. 1995, 122, 290878
56 By the time that these studies were underway, we knew already that direct rearrangement of the enamine was not feasible, but the aromatic Diels-Alder adducts could be rearranged.
57
Wuonola MA.
Smallheer JM.
Tetrahedron Lett.
1992,
33:
5697
58 The initial use of trityl moiety as a protecting group was largely dictated by the ready accessibility of the corresponding protected urocanic acid derivative, where the preparation of 4-isomer was described in the literature. When we commenced this aspect of the study, effective methods for the selective preparation of the 4-isomer were lacking. Further, we expected from the preliminary intermolecular results that these substrates would be viable.
59
Wu H.
MS Thesis
The University of Texas at Arlington;
Arlington, Texas:
2001.
60a
He Y.
Chen Y.
Wu H.
Lovely CJ.
Org. Lett.
2003,
5:
3623
60b Fenton, H. M. unpublished results.
We have generally found that these sulfonyl urea derivatives are very convenient to work with many of the substrates can be assembled in good yields and with minimal purification (no chromatography), thus much of chemistry is done with this protecting group. There are some drawbacks with its use, however. It has been found that the DMAS group can migrate to the sterically least encumbered nitrogen in several derivatives during prolonged heating during Diels-Alder reaction. Although this can be circumvented by using less labile groups, the construction of precursors can be complicated with SN2′-type processes particularly in the Bn-series (see Scheme 39 and Table 10). For related observations, see:
61a
Kim JW.
Abdelaal SM.
Bauer L.
Heimer NE.
J. Heterocycl. Chem.
1995,
32:
611
61b
Bhagavatula L.
Premchandran RH.
Plata DJ.
King SA.
Morton HE.
Heterocycles
2000,
53:
729
62a
Gschwend HW.
Lee AO.
Meier HP.
J. Org. Chem.
1973,
38:
2169
62b
Jung ME.
Gervay J.
Tetrahedron Lett.
1988,
29:
2429
62c
Jung ME.
Gervay J.
J. Am. Chem. Soc.
1991,
113:
224
62d
Jung ME.
Synlett
1990,
186
62e
Jung ME.
Synlett
1999,
843
63
He Y.
PhD Dissertation
The University of Texas at Arlington;
Arlington, Texas:
2005.
64 In these cases inseparable mixtures of the two cycloadducts were obtained. Reduction of the lactam to the amine was accomplished with LiAlH4 leading to a single product, indicating the regiochemical relationship between the two cycloadducts. He, Y.; Pasupathy, K.; Lovely C. J. unpublished results.
65 Attempted reductive cleavage of the amide to the corresponding amino alcohol was compromised by cleavage of the DMAS group under the forcing conditions required.
66
Ishikawa T.
Senzaki M.
Kadoya R.
Morimoto T.
Miyake N.
Izawa M.
Saito S.
Kobayashi J.
Am. Chem. Soc.
2001,
123:
4607
67 In fact given the results obtained subsequently with the benzhydryl analogue, it is quite reasonable to assume that both isomers are formed, but that the significant decomposition precluded isolation of the minor isomer.
68a
Richey JHG.
McLane RC.
Phillips CJ.
Tetrahedron Lett.
1976,
17:
233
68b
Adam W.
Beck AK.
Pichota A.
Saha-Möller CR.
Seebach D.
Vogel N.
Zhang R.
Tetrahedron: Asymmetry
2003,
14:
1355
69 Although the preparation of the requisite benzhydryl hydroxylamine is described in the literature (ref. 68), our attempts to repeat these methods were not especially successful. We have found that this hydroxylamine can be obtained reproducibly and on reasonably large scales with NaCNBH3 and careful control of the pH, using methyl orange as an indicator. For related examples, see: Bernhart C.
Wermuth C.-G.
Tetrahedron Lett.
1974,
15:
2493
70 We have found that the magnitude of this coupling constant (J = 10-12 Hz) falls into a very narrow range for both the lactams and oxazine systems prepared in the course of this study and is indicative of a trans ring fusion.
71 While it is conceivable that some of the endo-chloride was formed it would not have been sufficient to account for the diastereomeric ratios of the ethers observed via a purely SN2 pathway.
72 The Romo group has encountered a similar stereochemical problem in their Diels-Alder/rearrangment approach to palau’amine. See ref. 20.
73
Zhang X.
Foote CS.
J. Am. Chem. Soc.
1993,
115:
8867
74a
Adam W.
Ahrweiler M.
Sauter M.
Schmiedeskamp B.
Tetrahedron Lett.
1993,
34:
5247
74b
Adam W.
Ahrweiler M.
Peters K.
Schmiedeskamp B.
J. Org. Chem.
1994,
59:
2733
75a
Bernhart CA.
Perreaut PM.
Ferrari BP.
Muneaux YA.
Assens J.-LA.
Clement J.
Haudricourt F.
Muneaux CF.
Taillades JE.
Vignal M.-A.
Gougat J.
G uiraudou PR.
Lacour CA.
Roccon A.
Cazaubon CF.
Breliere J.-C.
Le Fur G.
Nisato D.
J. Med. Chem.
1993,
36:
3371
75b See also: Knaggs AR.
Cable KM.
Cannell RJP.
Sidebottom PJ.
Wells GN.
Sutherland DR.
Tetrahedron
1995,
36:
477
76 This substrate was chosen for purely pragmatic reasons and not by design. As a result of deconvoluting events related to the reaction of 60e with NPM described in Scheme
[15]
, we had accumulated a large supply of 64e.
77 The free alcohols were poor substrates due to benzylic oxidation.
78 At least to date, it has been difficult to incorporate other classes of protecting groups on this hydroxyl group, although the silylation can be accomplished easily.
79 During the course of this investigation we have prepared a large number of spiro-fused imidazolones and have not observed any significant differences in the spectroscopic properties as a function of stereochemistry.
80 Tetrahydrobenzimidazole can be readily obtained through the partial reduction of benzimidazole.
81 This assignment is based on the chemical shift of the imidazolone carbonyl in the 13C NMR spectrum which falls in a very narrow range (δC=O = 180.1-185.8 ppm) and is substantially different from the 4-isomer of 189 (δC=O = 197.4 ppm).
82
Klutchko S.
Hodges JC.
Blankley CJ.
Colbry NL.
J. Heterocycl. Chem.
1991,
28:
97
83a
Regel E.
Buechel K.-H.
Justus Liebigs Ann. Chem.
1977,
145
83b
Regel E.
Justus Liebigs Ann. Chem.
1977,
159
Attempts to employ a direct Curtius rearrangement using diphenylphosphoryl azide and the carboxylic acid were unsuccessful in our hands, although it has been employed previously in a few limited cases with imidazoles; see:
84a
Lin J.
Thompson CM.
J. Heterocycl. Chem.
1994,
31:
1701
84b
Choshi T.
Tonari A.
Yoshioka H.
Sugino E.
Hibino S.
J. Org. Chem.
1993,
58:
7952
For related systems, see:
85a
Garcia-Lopez MT.
Herranz R.
J. Heterocycl. Chem.
1982,
19:
233
85b
Dolensky B.
Takeuchi Y.
Cohen LA.
Kirk KL.
J. Fluorine Chem.
2001,
107:
147
86 A similar dimeric species was obtained in the oxidation of an indole derivative; see: Mithani S.
Drew DM.
Rydberg EH.
Taylor NJ.
Mooibroek S.
Dmitrienko GI.
J. Am. Chem. Soc.
1997,
119:
1159
87 Initial attempts to trigger this rearrangement using conditions that generate DMDO catalytically have not been successful. This is unfortunate since the use of the more reactive fluorinated variants of DMDO and asymmetric variants are more cost effective when conducted with catalytic loadings of the ketone.
88
Davis FA.
Sheppard AC.
Tetrahedron
1989,
45:
5703
89 Rasapalli, S.; Devine, T.; Koswatta, P.; Lovely, C. J. unpublished results.
90
Sannigrahi M.
Tetrahedron
1999,
55:
9007
91a
Schuster S.
Blechert S.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2037
91b
Grubbs RH.
Chan S.
Tetrahedron
1998,
54:
4413
91c
Blechert S.
Pure Appl. Chem.
1999,
71:
1393
91d
Pandit UK.
Overkleft HS.
Borer BC.
Bieräugel H.
Eur. J. Org. Chem.
1999,
959
91e
Phillips AJ.
Abell AD.
Aldrichimica Acta
1999,
32:
75
91f
Randall ML.
Snapper ML.
J. Mol. Catal. A: Chem.
1999,
133:
29
91g
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3012
91h
Trnka TM.
Grubbs RH.
Acc. Chem. Res.
2001,
34:
18
91i
Walters MA.
Prog. Heterocycl. Chem.
2003,
15:
1
91j
Deiters A.
Martin SF.
Chem. Rev.
2004,
104:
2199
91k
McReynolds MD.
Dougherty JM.
Hanson PR.
Chem. Rev.
2004,
109:
2239
91l
Grubbs RH.
Tetrahedron
2004,
60:
7117
For isolation, see:
92a
D’Ambrosio M.
Guerriero A.
Debitus C.
Ribes O.
Pusset J.
Leroy S.
Pietra F.
J. Chem. Soc., Chem. Commun.
1993,
1305
For total synthesis, see:
92b
Anderson GT.
Chase CE.
Koh Y.
Stien D.
Weinreb SM.
J. Org. Chem.
1998,
63:
7594
92c
Stien D.
Anderson GT.
Chase CE.
Koh Y.
Weinreb SM.
J. Am. Chem. Soc.
1999,
121:
9574
92d
Feldman KS.
Mingo PA.
Hawkins PCD.
Heterocycles
1999,
51:
1283
92e
Feldman KS.
Saunders JC.
J. Am. Chem. Soc.
2002,
124:
9060
92f
Feldman KS.
Saunders JC.
Wrobleski ML.
J. Org. Chem.
2002,
67:
7096
92g
Baron E.
O’Brien P.
Towers TD.
Tetrahedron Lett.
2002,
43:
723
92h
Hale KJ.
Domostoj MM.
Tocher DA.
Irving E.
Scheinmann F.
Org. Lett.
2003,
5:
2927
92i
Domostoj MM.
Irving E.
Scheinmann F.
Hale KJ.
Org. Lett.
2004,
6:
2615
92j
Davis FA.
Deng J.
Org. Lett.
2005,
7:
621
93
Ung T.
Hejl A.
Grubbs RH.
Schrodi Y.
Organometallics
2004,
23:
5399
94a
Sezen B.
Sames D.
J. Am. Chem. Soc.
2003,
125:
5274
94b
Sezen B.
Sames D.
J. Am. Chem. Soc.
2003,
125:
10580
95
Comins D.
Meyers AI.
Synthesis
1978,
403
96
Chen Y.
Dias HVR.
Lovely CJ.
Tetrahedron Lett.
2003,
44:
1379
97a
Gracias V.
Gasiecki AF.
Djuric SW.
Org. Lett.
2005,
7:
3183
97b
Gracias V.
Gasiecki AF.
Djuric SW.
Tetrahedron Lett.
2005,
46:
9046
98 A similar approach has been employed to elaborate vinylfuran derivatives; see: Cooper JA.
Cornwall P.
Dell CP.
Knight DW.
Tetrahedron Lett.
1988,
29:
2107
99a
Tsuji J.
Palladium Reagents and Catalysts
Wiley;
New York:
1996.
Chap. 4.
p.290-440
99b
Trost BM.
Van Vranken DL.
Chem. Rev.
1996,
96:
395
99c
Handbook of Organopalladium Chemistry for Organic Synthesis
Negishi E.-I.
Wiley-Interscience;
New York:
2002.
100a
Miyabe H.
Yoshida K.
Matsumura A.
Yamauchi M.
Takemoto Y.
Synlett
2003,
567
100b
Miyabe H.
Matsumura A.
Yoshida K.
Yamauchi M.
Takemoto Y.
Synlett
2004,
2123
100c
Miyabe H.
Yoshida K.
Reddy VK.
Matsumura A.
Takemoto Y.
J. Org. Chem.
2005,
70:
5630
100d For a review of this chemistry, see: Miyabe H.
Takemoto Y.
Synlett
2005,
1641
101 Krishnamoorthy, P.; Sivappa, R.; Lovely, C. J. Tetrahedron, submitted.
102
Papadopoulas EP.
J. Org. Chem.
1972,
37:
351