Subscribe to RSS
DOI: 10.1055/s-2006-939724
Asymmetric Cyanosilylation of Aldehydes Catalyzed by Novel Chiral Tetraaza-Titanium Complexes
Publication History
Publication Date:
24 April 2006 (online)

Abstract
The asymmetric addition of trimethylsilyl cyanide (TMSCN) to a range of aldehydes was efficiently catalyzed by a novel, easily prepared C 2-symmetric chiral tetraaza-Ti(IV) complex in high yields with up to 92% ee under mild conditions. A negative nonlinear effect between the ee of the ligand and the ee of the product was observed.
Key words
C 2-symmetric chiral tetraaza ligand - cyanosilylation - aldehydes - enantioselectivity - organotitanium
- For reviews on enantioselective synthesis of cyanohydrins and their derivatives, see:
-
1a
North M. Synlett 1993, 807 -
1b
Effenberger F. Angew. Chem., Int. Ed. Engl. 1994, 33: 1555 -
1c
Gregory RJH. Chem. Rev. 1999, 99: 3649 -
1d
Shibasaki M.Kanai M.Funabashi K. Chem. Commun. 2002, 1989 -
1e
North M. Tetrahedron: Asymmetry 2003, 14: 147 -
1f
Brunel JM.Holmes IP. Angew. Chem. Int. Ed. 2004, 43: 2752 -
1g
North M. Tetrahedron 2004, 60: 10383 -
2a
Effenberger BF.Ziegler T.Förster S. Angew. Chem., Int. Ed. Engl. 1987, 26: 458 -
2b
Brussee J.Ross EC.Vander AG. Tetrahedron Lett. 1988, 29: 4485 -
2c
Niedermeyer U.Kula MR. Angew. Chem., Int. Ed. Engl. 1990, 29: 386 -
2d
Kanerva LT. Acta. Chem. Scand. 1996, 50: 234 -
2e
Han S.Chen P.Lin G.Huang H.Li Z. Tetrahedron: Asymmetry 2001, 12: 843 -
3a
Danda H. Bull. Chem. Soc. Jpn. 1991, 64: 3743 -
3b
Callant D.Coussens B.v. d. Maten T.Vries JG.Vries NK. Tetrahedron: Asymmetry 1992, 3: 401 -
3c
Nitta H.Yu D.Kudo M.Mori A.Inoie S. J. Am. Chem. Soc. 1992, 114: 7969 -
3d
Hogg DJP.North M. Tetrahedron 1993, 49: 1079 - For recent reviews, see:
-
4a
Chen F.-X.Feng X.-M. Synlett 2005, 892 -
4b
Kanai M.Kato N.Ichikawa E.Shibasaki M. Synlett 2005, 1491 -
5a
Kobayashi S.Tsuchiya Y.Mukaiyama T. Chem. Lett. 1991, 537 -
5b
Hayashi M.Miyamoto Y.Inoue T.Oguni N. J. Org. Chem. 1993, 58: 1515 -
5c
Hayashi M.Inoue T.Miyamoto Y.Oguni N. Tetrahedron 1994, 50: 4385 -
5d
Bolm C.Müller P. Tetrahedron Lett. 1995, 36: 1625 -
5e
Whitesell JK.Apodaca R. Tetrahedron Lett. 1996, 37: 2525 -
5f
Belokon Y.Ikonnikov N.Moscalenko M.North M.Orlova S.Tararor V.Yashkina L. Tetrahedron: Asymmetry 1996, 7: 851 -
5g
Yang Y.Wang D. Synlett 1997, 1379 -
5h
Mori M.Imma H.Nakai T. Tetrahedron Lett. 1997, 38: 6229 -
5i
Jiang Y.-Z.Gong L.-Z.Feng X.-M.Hu W.-H.Pan W.-D.Li Z.Mi A.-Q. Tetrahedron 1997, 53: 14327 -
5j
Saravanan P.Anand RV.Singh VK. Tetrahedron Lett. 1998, 39: 3823 -
5k
Hwang CD.Hwang DR.Uang BJ. J. Org. Chem. 1998, 63: 6762 -
5l
Yang W.-B.Fang J.-M. J. Org. Chem. 1998, 63: 1356 -
5m
Brunel JM.Legrand O.Buono G. Tetrahedron: Asymmetry 1999, 10: 1979 -
5n
Jenner G. Tetrahedron Lett. 1999, 40: 491 -
5o
Curini M.Epifanio F.Macrotullio MC.Rosati O.Rossi M. Synlett 1999, 315 -
5p
Hamashima Y.Sawada D.Kanai M.Shibasaki M. J. Am. Chem. Soc. 1999, 121: 2641 -
6a
Fujii A.Sakaguchi S.Ishii Y. J. Org. Chem. 2000, 65: 6209 -
6b
Kantam ML.Sreekanth P.Santhi L. Green Chem. 2000, 4: 47 -
6c
Kruchok IS.Gerus II.Kukhar VP. Tetrahedron 2000, 56: 6533 -
6d
Hamashima Y.Kanai M.Shibasaki M. J. Am. Chem. Soc. 2000, 122: 7412 -
7a
Wilkinson HS.Grover PT.Vandenbossche CP.Bakale RP.Bhongle NN.Wald SA.Senanayake CH. Org. Lett. 2001, 3: 553 -
7b
Ooi T.Miura T.Takaya K.Ichikawa H.Maruoka K. Tetrahedron 2001, 57: 867 -
7c
Bandili M.Cozzi PG.Melchiiorre P.Achille UR. Tetrahedron Lett. 2001, 42: 3041 -
7d
Hamashima Y.Sawada D.Nogami H.Kanai M.Shibasaki M. Tetrahedron 2001, 57: 805 -
7e
Yang Z.-H.Wang L.-X.Zhou Z.-H.Zhou Q.-L.Tang C.-C. Tetrahedron: Asymmetry 2001, 12: 1579 -
8a
Yadav JS.Reddy BVS.Reddy MS.Prasad AR. Tetrahedron Lett. 2002, 43: 9703 -
8b
Tian J.Yamagiwa N.Matsunaga S.Shibasaki M. Angew. Chem. Int. Ed. 2002, 41: 3636 -
8c
Casas J.Najera C.Sansano JM.Saa JM. Org. Lett. 2002, 4: 2589 -
8d
Ishikawa T.Isobe T. Chem. Eur. J. 2002, 8: 552 -
8e
Belokon YN.Gutnov AV.Moskalenko MA.Yashkina LV.Lesovoy DE.Ikonnikov NS.Larichev VS.North M. Chem. Commun. 2002, 244 -
8f
Yang Z.-H.Zhou Z.-H.Wang L.-X. Synth. Commun. 2002, 32: 2751 -
8g
Norsikian S.Holmes I.Lagasse F. Tetrahedron Lett. 2002, 43: 5715 -
8h
Chang CW.Yang CT.Hwang CD. Chem. Commun. 2002, 54 -
8i
Liang S.Ru XR. J. Org. Chem. 2002, 67: 2702 -
9a
Chen F.-X.Feng X.-M.Qin B.Zhang G.-L.Jiang Y.-Z. Org. Lett. 2003, 5: 949 -
9b
Yang Z.-H.Zhou Z.-H.He K. Tetrahedron: Asymmetry 2003, 14: 3937 -
9c
Baleizao C.Gigante B.Garcia H. Tetrahedron Lett. 2003, 44: 6813 -
9d
Tian S.-K.Hong R.Deng L. J. Am. Chem. Soc. 2003, 125: 9900 -
9e
Cordoba R.Plumet J. Tetrahedron Lett. 2003, 44: 6857 -
9f
Shen Y.-C.Feng X.-M.Li Y. Tetrahedron 2003, 59: 5667 -
9g
Chen F.-X.Feng X.-M.Qin B.Zhang G.-L.Jiang Y.-Z. Synlett 2003, 558 -
10a
Li Y.He B.Feng X.-M.Zhang G.-L. Synlett 2004, 1598 -
10b
Kim SS.Kim DW.Rajagopal G. Synthesis 2004, 213 -
10c
Kim SS.Rajagopal G.Kim DW.Song DH. Synth. Commun. 2004, 34: 2973 -
10d
He B.Li Y.Feng X.-M.Zhang G.-L. Synlett 2004, 1776 -
10e
Karimi B.MáMani L. Org. Lett. 2004, 6: 4813 -
10f
Li Y.He B.Qin B.Feng X.-M.Zhang G.-L. J. Org. Chem. 2004, 69: 7910 -
10g
Ryu DH.Corey EJ. J. Am. Chem. Soc. 2004, 126: 8106 -
10h
Moloney MG.Yaqoob M. Synlett 2004, 1631 -
10i
Zhou H.Chen F.-X.Qin B.Feng X.-M. Synlett 2004, 1077 -
10j
He K.Zhou Z.Wang L.-X. Synlett 2004, 1521 -
10k
Shen Y.-C.Feng X.-M.Li Y. Eur. J. Org. Chem. 2004, 129 -
11a
Fetterly BM.Verkade JG. Tetrahedron Lett. 2005, 46: 8061 -
11b
Baeza A.Nájera C.Ma de Retamosa G.Sansano JM. Synthesis 2005, 2787 -
11c
Fuerst ED.Jacobsen NE. J. Am. Chem. Soc. 2005, 127: 8964 -
11d
Kitani Y.Kumamoto T.Isobe T.Fukuda K.Ishikawa T. Adv. Synth. Catal. 2005, 347: 1653 -
11e
Wen Y.-H.Huang X.Huang J.-L.Xiong Y.Qin B.Feng X.-M. Synlett 2005, 2445 -
11f
Liu X.-H.Qin B.Zhou X.He B.Feng X.-M. J. Am. Chem. Soc. 2005, 127: 12224 -
11g
Kurono N.Yamaguchi M.Suzuki K.Ohkuma T. J. Org. Chem. 2005, 70: 6530 -
11h
Trost BM.Martínez-Sánchez S. Synlett 2005, 627 -
11i
Kim YB.Kim MK.Kang SH.Kim YH. Synlett 2005, 1995 -
11j
Hatano M.Ikeno T.Miyamoto T.Ishihara K. J. Am. Chem. Soc. 2005, 127: 10776 - 12 For a review on chiral tetraaza ligands in asymmetric catalysis, see:
Fonseca MH.König B. Adv. Synth. Catal. 2003, 345: 1173 - 17
Avalos M.Babiano R.Cintas P.Jiménez JL.Palacios JC. Tetrahedron: Asymmetry 1997, 8: 2997 - 18
Girard C.Kagan HB. Angew. Chem. Int. Ed. 1998, 37: 2922
References and Notes
General Procedure for the Preparation of C
2
-Symmetric Tetraaza Ligands.
Step 1: To a solution of S-2-tert-butoxycarbonyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (3.467 g, 12.5 mmol) in CH2Cl2 was added Et3N (2.1 mL, 15 mmol) and isobutyl isobutyl chlorocarbonate (1.8 mL, 13.75 mmol) at 0 °C under stirring. After 20 min, (1R,2R)-1,2-diphenyl-ethane-1,2-diamine (1.061 g, 5 mmol) was added. It was warmed to r.t. and stirred for 10 h. The mixture was washed with 1 M KHSO4, sat. NaHCO3 and brine, dried over anhyd MgSO4 and concentrated. The residue was used for the next step directly.
Step 2: To a solution of the residue in CH2Cl2 (20 mL) was added TFA (12.5 mL) and stirred for 5 h. Then the solution was concentrated in vacuo, and H2O (25 mL) was added. The pH of the mixture was brought into the range of 11-12 by the addition of 2 M NaOH. The aqueous phase was extracted with CH2Cl2. The CH2Cl2 extracts were pooled, washed with brine, dried over anhyd MgSO4 and evaporated in vacuo. The crude product was purified by recrystallization to afford C
2-symmetric tetraaza ligands 2d as a white solid (2.388 g, 90% yield).
The following are the physical, NMR and HRMS data of 2d: mp 200.0-201.1 °C; [α]D 25 -86.3 (c 1.62, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 8.09 (2 H, s), 6.95-7.26 (18 H, m), 5.31 (2 H, m), 3.88 (2 H, m), 3.48 (4 H, m), 2.74-3.07 (4 H, m), 2.3 (2 H, m) ppm. 13C NMR (100 MHz, CDCl3): δ = 30.5, 47.1, 56.3, 58.8, 125.6, 126.2, 126.4, 127.6, 127.7, 128.5, 129.2, 133.7, 135.4, 138.7, 173.2 ppm. HRMS (ESI): m/z calcd for C34H34N4O2 531.2755 [M + H]+; found: 531.2760 [M + H]+.
15General Procedure for Asymmetric Cyanosilylation of Aldehydes. To a solution of 2d (19.9 mg, 0.0375 mmol) and p-nitro-benzoic acid (3.1 mg, 0.0186 mmol) in CH2Cl2 (0.4 mL) was added Ti(Oi-Pr)4 (1 M in toluene, 75 µL, 0.075 mmol) and CH2Cl2 (0.5 mL) at r.t., then the mixture was stirred at 35 °C for 1 h under N2 atmosphere. To this solution, aldehyde (0.25 mmol), TMSCN (70 µL, 0.525 mmol) and CH2Cl2 (0.1 mL) were added, in that order, at 0 °C under an N2 atmosphere. After the aldehyde was completely converted (monitored by TLC, 14-36 h), the crude product was purified by column chromatography to give the corresponding cyanohydrin trimethylsilyl ether as colorless oil. After conversion into the acetate, the ee value was determined.
16Physical, NMR and HRMS data of 1a: mp 140.5-141.3 °C; [α]D 25 -73.3° (c 1.86, CH2Cl2). 1H NMR (600 MHz, CDCl3): δ = 8.37 (s, 2 H), 7.06-7.12 (m, 6 H), 7.00-7.02 (m, 4 H), 5.14 (m, 2 H), 3.63 (m, 2 H), 2.93 (m, 2 H), 2.86 (m, 2 H), 2.23 (s, 2 H), 2.07 (m, 2 H), 1.76 (m, 2 H), 1.63 (m, 4 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 26.0, 30.6, 47.2, 58.1, 60.5, 127.4, 127.5, 128.2, 139.0, 174.5 ppm. HRMS (ESI): m/z calcd for C24H30N4O2: 407.2442 [M + H]+; found: 407.2456 [M + H]+.
19Only 16-24% ee was obtained for aliphatic aldehydes.