References and Notes
<A NAME="RU02406ST-1A">1a</A>
Konno K.
Hayano K.
Shirahama H.
Saito H.
Matsumoto T.
Tetrahedron
1982,
38:
3281
<A NAME="RU02406ST-1B">1b</A>
Budzikiewicz H.
Horstmann C.
Pufahl K.
Schreiber K.
Chem. Ber.
1967,
100:
2798
<A NAME="RU02406ST-2A">2a</A>
Dugar S,
Chakravararty S,
Conte A,
Axon J, and
Mcenroe G. inventors; PCT Int. WO 087056.
; Chem. Abstr. 2004, 141, 332209
<A NAME="RU02406ST-2B">2b</A>
Kikuchi K,
Oku M,
Hondo T,
Kimizuka T,
Watanabe T,
Nagakura Y,
Tomiyama H,
Sonegawa M,
Tokuzaki K, and
Iwai Y. inventors; PCT Int. WO 011430.
; Chem. Abstr. 2004, 140, 163710
<A NAME="RU02406ST-3A">3a</A>
Piazza GA, and
Pamukcu R. inventors; US Patent 6060477.
; Chem. Abstr. 2000, 132, 321870
<A NAME="RU02406ST-3B">3b</A>
Benham CD.
Blackburn TP.
Johns A.
Kotecha NR.
Nikesh R.
Martin RT.
Thomas DR.
Thompson M.
Ward RW.
Bioorg. Med. Chem. Lett.
1995,
5:
2455
<A NAME="RU02406ST-3C">3c</A>
Baker R,
Saunders J, and
Macleod AM. inventors; UK Patent GB 2174695.
; Chem. Abstr. 1987, 106, 176429
<A NAME="RU02406ST-3D">3d</A>
Hunkeler W, and
Kyburz E. inventors; Eur. Patent EP 59388.
; Chem. Abstr. 1983, 98, 53952
<A NAME="RU02406ST-4">4</A>
Yamada S.
Misono T.
Iwai Y.
Tetrahedron Lett.
2005,
46:
2239
<A NAME="RU02406ST-5A">5a</A>
Leroy F.
Despres P.
Bigan M.
Blondeau D.
Synth. Commun.
1996,
26:
2257
<A NAME="RU02406ST-5B">5b</A>
Bunting JW.
Kanter JP.
J. Am. Chem. Soc.
1991,
113:
6950
<A NAME="RU02406ST-5C">5c</A>
Radinov R.
Haimova M.
Simova E.
Synthesis
1986,
886
<A NAME="RU02406ST-5D">5d</A>
Hurd CD.
Bethune VG.
J. Org. Chem.
1970,
35:
1471
<A NAME="RU02406ST-5E">5e</A>
Taylor EC.
Driscoll JS.
J. Am. Chem. Soc.
1960,
82:
3141
<A NAME="RU02406ST-6">6</A>
Nitropyrimidinone 1 is readily prepared from 2-thiouracil by reduction,
[12]
methylation
[12]
and nitration
[8]
in 43% overall yield.
<A NAME="RU02406ST-7A">7a</A>
Nishiwaki N.
Ariga M.
J. Synth. Org. Chem. Jpn.
2003,
61:
882
<A NAME="RU02406ST-7B">7b</A>
Gromov SP.
Heterocycles
2000,
53:
1607
<A NAME="RU02406ST-7C">7c</A>
van der Plas HC.
J. Heterocycl. Chem.
2000,
37:
427
<A NAME="RU02406ST-7D">7d</A>
van der Plas HC. In
Advances in Heterocyclic Chemistry
Vol. 74:
Katritzky AR.
Academic Press;
London:
1999.
<A NAME="RU02406ST-7E">7e</A>
Russinov VL.
Chupakhin ON.
van der Plas HC.
Heterocycles
1995,
40:
441
<A NAME="RU02406ST-8A">8a</A>
Nishiwaki N.
Yamashita K.
Azuma M.
Adachi T.
Tamura M.
Ariga M.
Synthesis
2004,
1996
<A NAME="RU02406ST-8B">8b</A>
Nishiwaki N.
Azuma M.
Tamura M.
Hori K.
Tohda Y.
Ariga M.
Chem. Commun.
2002,
2170
<A NAME="RU02406ST-8C">8c</A>
Nishiwaki N.
Adachi T.
Matsuo K.
Wang H.-P.
Matsunaga T.
Tohda Y.
Ariga M.
J. Chem. Soc., Perkin Trans. 1
2000,
27
<A NAME="RU02406ST-8D">8d</A>
Nishiwaki N.
Tohda Y.
Ariga M.
Synthesis
1997,
1277
<A NAME="RU02406ST-9">9</A>
To ethyl 3-oxobutanoate (127 µL, 1 mmol), propylamine (99 µL, 1.2 mmol) was added,
and the resultant mixture was stirred without solvent at r.t. for 2 h. Excess amounts
of amine and unreacted reagent were removed under reduced pressure to give enaminone
2a (170 mg, 1 mmol, quant.) as the residual yellow oil. Since enaminone 2a was sufficiently pure in the 1H NMR, it was used for the following ring trans-formation without further purification.
Other enaminones were prepared in a similar way changing amines or 1,3-dicarbonyl
compounds. When the reaction did not reach completion, the mixture was heated at 60
°C for a long time.
<A NAME="RU02406ST-10">10</A>
Spectral data for 3a: yellow oil. IR (neat): 3346, 1687, 1219, 1105 cm-1. 1H NMR (400 MHz, CDCl3, TMS): δ = 1.03 (t, J = 7.3 Hz, 3 H), 1.39 (t, J = 7.1 Hz, 3 H), 1.71 (tq, J = 7.3, 6.9 Hz, 2 H), 3.19 (dt, J = 6.9, 6.9 Hz, 2 H), 4.34 (q, J = 7.1 Hz, 2 H), 6.51 (d, J = 6.1 Hz, 1 H), 8.00-8.10 (br s, 1 H), 8.21 (d, J = 6.1 Hz, 1 H), 8.87 (s, 1 H). 13C NMR (100 MHz, CDCl3, TMS): δ = 11.6 (q), 14.3 (q), 22.2 (t), 44.0 (t), 60.4 (t), 105.9 (d), 107.1 (s),
152.4 (d), 152.5 (d), 154.7 (s), 168.1 (s). Anal. Calcd for C11H16N2O2: C, 63.44; H, 7.74; N, 13.45. Found: C, 63.19; H, 7.90; N, 13.49.
Other APCA derivatives also showed satisfactory spectral data.
<A NAME="RU02406ST-11">11</A>
Spectral Data for 16.
To a solution of pyridine derivative 3h (210 mg, 1 mmol) in THF (10 mL), NaH (60 wt%, 80 mg, 2 mmol) was added, and the mixture
was heated under reflux for 1 d. After quenching with 1 M HCl (2 mL, 2 mmol), the
reaction mixture was evaporated under vacuo. The residue was washed with CHCl3 (3 × 10 mL), and then extracted with EtOH (2 × 15 mL). After drying over MgSO4, the solvent was removed under reduced pressure to give 3,4-dihydro-pyrido[4,3-e][1,4]oxazepin-1-one (16, 180 mg, 1 mmol, quant.) as a pale-yellow solid. IR (nujol): 1691, 1201, 1045 cm-1. 1H NMR (400 MHz, DMSO-d
6, TMS): δ = 3.10-3.20 (m, 2 H), 3.50-3.80 (m, 2 H), 6.48 (d, J = 5.8 Hz, 1 H), 7.97 (d, J = 5.8 Hz, 1 H), 8.67 (s, 1 H), 9.50-9.60 (br s, 1 H). 13C NMR (100 MHz, DMSO-d
6, TMS): δ = 45.3 (t), 60.8 (t), 106.1 (d), 126.9 (s), 151.5 (d), 153.7 (d), 155.6
(s), 173.2 (s).
<A NAME="RU02406ST-12">12</A>
Bauer L.
Wright GE.
Mikrut BA.
Bell CE.
J. Heterocycl. Chem.
1965,
2:
447