Klin Padiatr 2006; 218(6): 327-333
DOI: 10.1055/s-2006-942273
Original Article

© Georg Thieme Verlag Stuttgart · New York

Identification of Candidate Target Antigens for Antibody-Based Immunotherapy in Childhood B-Cell Precursor ALL

Identifikation möglicher Zielantigene für eine Antikörper-basierte Immuntherapie bei Kindern und Jugendlichen mit B-Zell-Vorläufer-ALLS. Gudowius1 , K. Recker1 , H.-J. Laws1 , U. Dirksen1 , 2 , A. Tröger1 , U. Wieczorek1 , S. Furlan1 , U. Göbel1 , H. Hanenberg1
  • 1Department of Pediatric Oncology, Hematology and Immunology, Children's Hospital, UKD, Heinrich Heine University, Düsseldorf, Germany
  • 2Department of Pediatric Hematology and Oncology, Münster, Germany
Further Information

Publication History

Publication Date:
02 November 2006 (online)

Abstract

Background: Contemporary risk adapted treatment protocols for childhood acute lymphoblastic leukemia (ALL) rely on accurate risk assessment strategies for disease reoccurrence by incorporating clinical parameters as well as immunological, molecular and cytogenetic features of the blasts at initial manifestation. Additional risk stratification is provided by analysis of the in vitro and in vivo response of the blasts towards standard chemotherapy. Despite adapted therapies, a number of children with good and bad prognostic factors still fail therapy. One approach to this problem might be to incorporate monoclonal antibodies (MoAbs) as additional modalities into the first or second line treatment. Patients and Methods: In order to identify target antigen structures, we analyzed the immunological expression profiles of blasts from 181 patients with B-cell precursor ALL treated at our institution in 11 years according to the CoALL-92/97/03 protocols. Blasts were classified according to the EGIL guidelines as 9 proB-, 110 common (c-) and 62 preB-ALL. Results: > 99 and 96 % of patients expressed CD19 and CD22 on > 90 % of their blasts, respectively. HLA-DR on > 95 % blasts was present in all patients. CD10 was expressed on all c-/preB-ALL and absent on proB-ALL cells. CD20 was expressed on 11-37 % of B-cell precursor ALL samples. CD34 positive blasts were found in 89, 83 and 68 % of patients with proB-, c- and preB-ALL, respectively. CD37 expression was detected in 0-18 % of patients. < 20 % CD45+ blasts were found in 11, 19 and 18 % of patients with proB-, c- and preB-ALL. CD33+ was expressed on 33, 29 and 21 % of patients samples with proB-, c- and preB-ALL. Other myeloid antigens (CD13, CD14, CD15, CD65) were positive on blasts in < 25 % of patients. Analyses of the immunological profile of blasts in 9 consecutive children with relapse revealed that the antigen expression profile varied little compared to the initial diagnosis for CD10, CD19, CD22 and HLA-DR. Conclusions: These analyses clearly identified the three antigens CD19, CD22 and HLA-DR present on blasts in more than 90 % of patients as potential target structures for targeted therapies with native or toxin-bound monoclonal antibodies in childhood ALL.

Zusammenfassung

Hintergrund: Gegenwärtige Risiko-adaptierte Behandlungsprotokolle für Kinder und Jugendliche mit akuter lymphoblastischer Leukämie (ALL) basieren auf akkuraten Risikoabschätzungsstrategien für das Auftreten eines Rezidives, denen klinische Parameter, immunologische, molekularbiologische und zytogenetische Eigenschaften der Blasten zum Diagnosezeitpunkt zugrunde liegen. Eine zusätzliche Risikostratifizierung erfolgt durch das In-vitro- oder In-vivo- Ansprechen der Blasten auf eine Standardchemotherapie. Trotz entsprechend durchgeführter Therapien erleiden eine Anzahl an Kindern mit guten und schlechten prognostischen Merkmalen ein Rezidiv. Eine Verbesserung der Prognose könnte durch den Einsatz monoklonaler Antikörper als zusätzliche Behandlungsmodalität in der Primär- oder Sekundärtherapie erreicht werden. Patienten und Methodik: Um potenzielle Zielstrukturen für monoklonale Antikörper zu identifizieren, untersuchten wir das immunologische Expressionsprofil der Blasten von 181 Patienten mit B-Zell-Vorläufer-ALL, welche in den vergangenen 11 Jahren in unserer Klinik nach den CoALL-Protokollen 92/97/03 behandelt wurden. Die Blasten wurden gemäß den EGIL-Kriterien als 9 proB-, 110 common (c-) und 62 präB-ALL klassifiziert. Ergebnisse: > 99 bzw. 96 % der Patienten exprimieren CD19 bzw. CD22 auf > 90 % der Blasten. HLA-DR war bei allen Patienten auf > 95 % der Blasten vorhanden. CD10 wurde auf allen c-/präB-ALL exprimiert und fehlte auf den proB-ALL Blasten. CD20 war auf 11-37 % der B-Vorläufer-ALL-Proben nachweisbar. CD34-positive Blasten wurden bei jeweils 89, 83 und 68 % der Patienten mit proB-, c- und präB-ALL gefunden. Eine Expression von CD37 auf den Blasten konnte in 0-18 % der Patienten nachgewiesen werden. < 20 % CD45+ Blasten waren bei 11, 19 und 18 % der Patienten mit proB-, c- und präB-ALL nachweisbar. CD33 war auf jeweils 33, 29 und 21 % der proB-, c- und präB-ALL Proben nachweisbar. Andere myeloische Antigene (CD13, CD14, CD15, CD65) waren bei < 25 % der Patienten auf den Blasten exprimiert. Analysen des immunologischen Antigenprofils der Blasten zum Zeitpunkt der Diagnose und des Rezidives bei 9 konsekutiven Patienten zeigte hinsichtlich der Expression von CD10, CD19, CD22 und HLA-DR wenig Unterschiede. Schlussfolgerungen: Diese Analysen identifizieren die drei Antigene CD19, CD22 und HLA-DR, die auf den Blasten von mehr als 90 % der Patienten nachweisbar sind, als mögliche Zielstrukturen für den Einsatz von nativen oder Toxin-gebundenen monoklonalen Antikörpern bei Kindern und Jugendlichen mit ALL.

References

  • 1 Allen T M, Mumbengegw D R, Charrois G J. Anti-CD19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine B-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates.  Clin Cancer Res. 2005;  11 3567-3573
  • 2 Behm F G, Raimondi S C, Schell M J, Look A T, Rivera G K, Pui C H. Lack of CD45 antigen on blast cells in childhood acute lymphoblastic leukemia is associated with chromosomal hyperdiploidy and other favorable prognostic features.  Blood. 1992;  79 1011-1016
  • 3 Bene M C, Castoldi G, Knapp W, Ludwig W D, Matutes E, Orfao A, van't Veer M B. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL).  Leukemia. 1995;  9 1783-1786
  • 4 Borkhardt A, Wuchter C, Viehmann S, Pils S, Teigler-Schlegel A, Stanulla M, Zimmermann M, Ludwig W D, Janka-Schaub G, Schrappe M, Harbott J. Infant acute lymphoblastic leukemia - combined cytogenetic, immunophenotypical and molecular analysis of 77 cases.  Leukemia. 2002;  16 1685-1690
  • 5 Brenner M K, Wulf G G, Rill D R, Luo K L, Goodell M A, Mei Z, Kuehnle I, Brown M P, Pule M, Heslop H E, Krance R A. Complement-fixing CD45 monoclonal antibodies to facilitate stem cell transplantation in mouse and man.  Ann N Y Acad Sci. 2003;  996 80-88
  • 6 Carroll W L, Bhojwani D, Min D J, Raetz E, Relling M, Davies S, Downing J R, Willman C L, Reed J C. Pediatric acute lymphoblastic leukemia. Hematology (Am Soc Hematol Educ Program) 2003: 102-131
  • 7 Cartron G, Watier H, Golay J, Solal-Celigny P. From the bench to the bedside: ways to improve rituximab efficacy.  Blood. 2004;  104 2635-2642
  • 8 Cheson B D. Monoclonal antibody therapy for B-cell malignancies.  Semin Oncol. 2006;  33 S2-S14
  • 9 Cioca D P, Deak E, Cioca F, Paunescu V. Monoclonal antibodies targeted against melanoma and ovarian tumors enhance dendritic cell-mediated cross-presentation of tumor-associated antigens and efficiently cross-prime CD8+ T cells.  J Immunother. 2006;  29 41-52
  • 10 Ciudad J, San Miguel J F, Lopez-Berges M C, Vidriales B, Valverde B, Ocqueteau M, Mateos G, Caballero M D, Hernandez J, Moro M J, Mateos M V, Orfao A. Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia.  J Clin Oncol. 1998;  16 3774-3781
  • 11 Coleman M, Goldenberg D M, Siegel A B, Ketas J C, Ashe M, Fiore J M, Leonard J P. Epratuzumab: targeting B-cell malignancies through CD22.  Clin Cancer Res. 2003;  9 3991 S-3994 S
  • 12 Dechant M, Bruenke J, Valerius T. HLA class II antibodies in the treatment of hematologic malignancies.  Semin Oncol. 2003;  30 465-475
  • 13 Den Boer M L, Harms D O, Pieters R, Kazemier K M, Gobel U, Korholz D, Graubner U, Haas R J, Jorch N, Spaar H J, Kaspers G J, Kamps W A, Van der Does-Van den Berg A, Van Wering E R, Veerman A J, Janka-Schaub G E. Patient stratification based on prednisolone-vincristine-asparaginase resistance profiles in children with acute lymphoblastic leukemia.  J Clin Oncol. 2003;  21 3262-3268
  • 14 DiJoseph J F, Dougher M M, Kalyandrug L B, Armellino D C, Boghaert E R, Hamann P R, Moran J K, Damle N K. Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-targeted cytotoxic immunoconjugate of calicheamicin, and rituximab against non-Hodgkin's B-cell lymphoma.  Clin Cancer Res. 2006;  12 242-249
  • 15 Dillman R O. Monoclonal antibody therapy for lymphoma: an update.  Cancer Pract. 2001;  9 71-80
  • 16 Eckert C, Biondi A, Seeger K, Cazzaniga G, Hartmann R, Beyermann B, Pogodda M, Proba J, Henze G. Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia.  Lancet. 2001;  358 1239-1241
  • 17 EGIL . The value of c-kit in the diagnosis of biphenotypic acute leukemia. EGIL (European Group for the Immunological Classification of Leukaemias).  Leukemia. 1998;  12 2038
  • 18 Einsiedel H G, Stackelberg  von A, Hartmann R, Fengler R, Schrappe M, Janka-Schaub G, Mann G, Hahlen K, Gobel U, Klingebiel T, Ludwig W D, Henze G. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Munster Group 87.  J Clin Oncol. 2005;  23 7942-7950
  • 19 Gokbuget N, Hoelzer D. Treatment with monoclonal antibodies in acute lymphoblastic leukemia: current knowledge and future prospects.  Ann Hematol. 2004;  83 201-205
  • 20 Goldenberg D M. The role of radiolabeled antibodies in the treatment of non-Hodgkin's lymphoma: the coming of age of radioimmunotherapy.  Crit Rev Oncol Hematol. 2001;  39 195-201
  • 21 Gordon L I, Molina A, Witzig T, Emmanouilides C, Raubtischek A, Darif M, Schilder R J, Wiseman G, White C A. Durable responses after ibritumomab tiuxetan radioimmunotherapy for CD20+ B-cell lymphoma: long-term follow-up of a phase 1/2 study.  Blood. 2004;  103 4429-4431
  • 22 Harms D O, Göbel U, Spaar H J, Graubner U B, Jorch N, Gutjahr P, Janka-Schaub G E. Thioguanine offers no advantage over mercaptopurine in maintenance treatment of childhood ALL: results of the randomized trial COALL-92.  Blood. 2003;  102 2736-2740
  • 23 Harms D O, Janka-Schaub G E. Co-operative study group for childhood acute lymphoblastic leukemia (COALL): long-term follow-up of trials 82, 85, 89 and 92.  Leukemia. 2000;  14 2234-2239
  • 24 Herrera L, Yarbrough S, Ghetie V, Aquino D B, Vitetta E S. Treatment of SCID/human B cell precursor ALL with anti-CD19 and anti-CD22 immunotoxins.  Leukemia. 2003;  17 334-338
  • 25 Holleman A, den Boer M L, Menezes R X, Cheok M H, Cheng C, Kazemier K M, Janka-Schaub G E, Göbel U, Graubner U B, Evans W E, Pieters R. Expression of the outcome predictor in acute leukemia 1 (OPAL1) gene is not an independent prognostic factor in patients treated on COALL or St. Judes protocols.  Blood. 2006;  108 984-990
  • 26 Hurvitz S A, Timmerman J M. Current status of therapeutic vaccines for non-Hodgkin's lymphoma.  Curr Opin Oncol. 2005;  17 432-440
  • 27 Illidge T M, Cragg M S, McBride H M, French R R, Glennie M J. The importance of antibody-specificity in determining successful radioimmunotherapy of B-cell lymphoma.  Blood. 1999;  94 233-243
  • 28 Janka-Schaub G E, Harms D O, den Boer M L, Veerman A J, Pieters R. [In vitro drug resistance as independent prognostic factor in the study COALL-O5-92 Treatment of childhood acute lymphoblastic leukemia; two-tiered classification of treatments based on accepted risk criteria and drug sensitivity profiles in study COALL-06-97].  Klin Pädiatr. 1999;  211 233-238
  • 29 Juric J G. Antibody-based treatment for leukemia and lymphoma. ASCO 2002 Annual Meeting Summaries 179-186
  • 30 Langebrake C, Brinkmann I, Teigler-Schlegel A, Creutzig U, Griesinger F, Puhlmann U, Reinhardt D. Immunophenotypic differences between diagnosis and relapse in childhood AML: Implications for MRD monitoring.  Cytometry B Clin Cytom. 2005;  63 1-9
  • 31 Langebrake C, Creutzig U, Reinhardt D. Immunophenotype of down syndrome acute myeloid leukemia and transient myeloproliferative disease differs significantly from other diseases with morphologically identical or similar blasts.  Klin Pädiatr. 2005;  217 126-134
  • 32 Leonard J P, Coleman M, Ketas J C, Chadburn A, Furman R, Schuster M W, Feldman E J, Ashe M, Schuster S J, Wegener W A, Hansen H J, Ziccardi H, Eschenberg M, Gayko U, Fields S Z, Cesano A, Goldenberg D M. Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin's lymphoma: phase I/II clinical trial results.  Clin Cancer Res. 2004;  10 5327-5334
  • 33 Leonard J P, Furman R R, Ruan J, Coleman M. New developments in immunotherapy for non-Hodgkin's lymphoma.  Curr Oncol Rep. 2005;  7 364-371
  • 34 Leonard J P, Link B K. Immunotherapy of non-Hodgkin's lymphoma with hLL2 (epratuzumab, an anti-CD22 monoclonal antibody) and Hu1D10 (apolizumab).  Semin Oncol. 2002;  29 81-86
  • 35 Linden O, Tennvall J, Cavallin-Stahl E, Darte L, Garkavij M, Lindner K J, Ljungberg M, Ohlsson T, Sjogreen K, Wingardh K, Strand S E. Radioimmunotherapy using 131I-labeled anti-CD22 monoclonal antibody (LL2) in patients with previously treated B-cell lymphomas.  Clin Cancer Res. 1999;  5 3287 s-3291 s
  • 36 Linden O, Tennvall J, Hindorf C, Cavallin-Stahl E, Lindner K J, Ohlsson T, Wingardh K, Strand S E. 131I-labelled anti-CD22 MAb (LL2) in patients with B-cell lymphomas failing chemotherapy. Treatment outcome, haematological toxicity and bone marrow absorbed dose estimates.  Acta Oncol. 2002;  41 297-303
  • 37 Ma D, McDevitt M R, Barendswaard E, Lai L, Curcio M J, Pellegrini V, Brechbiel M W, Scheinberg D A. Radioimmunotherapy for model B cell malignancies using 90Y-labeled anti-CD19 and anti-CD20 monoclonal antibodies.  Leukemia. 2002;  16 60-66
  • 38 Maloney D G, Smith B, Rose A. Rituximab: mechanism of action and resistance.  Semin Oncol. 2002;  29 2-9
  • 39 Mone A P, Huang P, Pelicano H, Cheney C M, Green J M, Tso J Y, Johnson A J, Jefferson S, Lin T S, Byrd J C. Hu1D10 induces apoptosis concurrent with activation of the AKT survival pathway in human chronic lymphocytic leukemia cells.  Blood. 2004;  103 1846-1854
  • 40 Press O W, Leonard J P, Coiffier B, Levy R, Timmerman J. Immunotherapy of Non-Hodgkin's Lymphomas. Hematology (Am Soc Hematol Educ Program) 2001: 221-240
  • 41 Pui C H, Campana D, Evans W E. Childhood acute lymphoblastic leukaemia - current status and future perspectives.  Lancet Oncol. 2001;  2 597-607
  • 42 Ratei R, Sperling C, Karawajew L, Schott G, Schrappe M, Harbott J, Riehm H, Ludwig W D. Immunophenotype and clinical characteristics of CD45-negative and CD45-positive childhood acute lymphoblastic leukemia.  Ann Hematol. 1998;  77 107-114
  • 43 Renner C, Trumper L, Pfreundschuh M. Monoclonal antibodies in the treatment of non-Hodgkin's lymphoma: recent results and future prospects.  Leukemia. 1997;  11 (Suppl 2) S 55-S 59
  • 44 Rossig C, Pscherer S, Landmeier S, Altvater B, Jurgens H, Vormoor J. Adoptive cellular immunotherapy with CD19-specific T cells.  Klin Pädiatr. 2005;  217 351-356
  • 45 Rothe G, Schmitz G. Consensus protocol for the flow cytometric immunophenotyping of hematopoietic malignancies. Working Group on Flow Cytometry and Image Analysis.  Leukemia. 1996;  10 877-895
  • 46 Schrappe M, Arico M, Harbott J, Biondi A, Zimmermann M, Conter V, Reiter A, Valsecchi M G, Gadner H, Basso G, Bartram C R, Lampert F, Riehm H, Masera G. Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of a favorable treatment outcome.  Blood. 1998;  92 2730-2741
  • 47 Sievers E L, Linenberger M. Mylotarg: antibody-targeted chemotherapy comes of age.  Curr Opin Oncol. 2001;  13 522-527
  • 48 Timmerman J M, Czerwinski D K, Davis T A, Hsu F J, Benike C, Hao Z M, Taidi B, Rajapaksa R, Caspar C B, Okada C Y, van Beckhoven A, Liles T M, Engleman E G, Levy R. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients.  Blood. 2002;  99 1517-1526
  • 49 Tuscano J M, O’Donnell R T, Miers L A, Kroger L A, Kukis D L, Lamborn K R, Tedder T F, DeNardo G L. The anti-CD22 ligand blocking antibody, HB22.7, has independent lymphomacidal properties and augments the efficacy of 90Y-DOTA-peptide-Lym-1 in lymphoma xenografts.  Blood. 2003;  101 3641-3647
  • 50 Tutt A L, French R R, Illidge T M, Honeychurch J, McBride H M, Penfold C A, Fearon D T, Parkhouse R M, Klaus G G, Glennie M J. Monoclonal antibody therapy of B cell lymphoma: signaling activity on tumor cells appears more important than recruitment of effectors.  J Immunol. 1998;  161 3176-3185
  • 51 van Dongen J J, Seriu T, Panzer-Grumayer E R, Biondi A, Pongers-Willemse M J, Corral L, Stolz F, Schrappe M, Masera G, Kamps W A, Gadner H, van Wering E R, Ludwig W D, Basso G, de Bruijn M A, Cazzaniga G, Hettinger K, van der Does-van den Berg A, Hop W C, Riehm H, Bartram C R. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood.  Lancet. 1998;  352 1731-1738
  • 52 Weng W K, Czerwinski D, Timmerman J, Hsu F J, Levy R. Clinical outcome of lymphoma patients after idiotype vaccination is correlated with humoral immune response and immunoglobulin G Fc receptor genotype.  J Clin Oncol. 2004;  22 4717-4724
  • 53 Wenner K A, Vieira Pinheiro J P, Escherich G, Wessalowski R, Jorch N, Wolff J, Stehn M, Kohlschutter A, Boos J, Janka-Schaub G E. Asparagine concentration in plasma after 2 500 IU/m(2) PEG-asparaginase i. v. in children with acute lymphoblastic leukemia.  Klin Pädiatr. 2005;  217 321-326
  • 54 Wierda W G, Kipps T J, Keating M J. Novel immune-based treatment strategies for chronic lymphocytic leukemia.  J Clin Oncol. 2005;  23 6325-6332

H. HanenbergM. D. 

Dep. of Pediatric Oncology, Hematology & Immunology · Children's Hospital · Heinrich Heine University

Moorenstr. 5

40225 Düsseldorf

Germany

Phone: +49/2 11/8 11 76 80

Fax: +49/2 11/8 11 64 36

Email: Hanenberg@uni-duesseldorf.de