Synthesis 2006(14): 2313-2318  
DOI: 10.1055/s-2006-942448
PAPER
© Georg Thieme Verlag Stuttgart · New York

Efficient Formation of Polycyclic Aromatic Systems Fused to a Thiadiazole Ring Using Strong Lewis or Brønsted Acids

Esther Lea Svartmana, María Fernanda Rozasa, Oscar Enrique Pirob, Eduardo Castellanoc, María Virginia Mirífico*a,d
a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Departamento de Química, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina
Fax: +54(221)4254642; e-Mail: mirifi@inifta.unlp.edu.ar;
b Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and IFLP (CONICET), C. C. 67, 1900 La Plata, Argentina
c Instituto Física de São Carlos, Universidade de São Paulo, C.P. 369, 13560 São Carlos (SP), Brazil
d Facultad de Ingeniería, Departamento de Ingeniería Química, Universidad Nacional de La Plata, Calle 47 y 1, 1900 La Plata, Argentina
Further Information

Publication History

Received 11 November 2005
Publication Date:
28 June 2006 (online)

Abstract

We report the efficient formation of a 9,10-dihydrophenanthrene polycyclic system fused to 1,2,5-thiadiazole 1,1-dioxide via formation of an aryl-aryl bond using strong Brønsted and Lewis acids, at different temperatures. The syntheses of the novel asymmetric 3,6-dibenzophenanthro[9,10-c]- and phenanthro[9,10-c]-1,2,5-thiadiazole 1,1-dioxides employing concentrated sulfuric or chlorosulfonic acids, or aluminum chloride as promoters are compared. The cyclizations promoted by Brønsted acids are faster than those with aluminum chloride, but the yields are similar. On a laboratory scale the cost of reagents using Brønsted acids is one half that for the conventional procedure. The preparation and characterization of 3,4-bis (2-naphthyl)-1,2,5-thiadiazole 1,1-dioxide, the precursor of the new asymmetric 3,6-dibenzophenanthro derivative, are also described, and some aspects of its cyclization are rationalized by inspection of the results of a PM3 geometry optimization.

12

Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC-267854 for compound 4 and CCDC-267853 for compound 5. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road Cambridge CB2 1EZ, UK [fax: +44(1223)336033 or e-mail: deposit@ccdc.cam.ac.uk].