Semin Thromb Hemost 2006; 32(4): 307-340
DOI: 10.1055/s-2006-942754
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

The 2001 World Health Organization and Updated European Clinical and Pathological Criteria for the Diagnosis, Classification, and Staging of the Philadelphia Chromosome-Negative Chronic Myeloproliferative Disorders

Jan J. Michiels1 , 6 , Hendrik De Raeve2 , Zwi Berneman1 , Dirk Van Bockstaele3 , Konnie Hebeda4 , King Lam5 , Wilfried Schroyens1
  • 1Department of Hematology, University Hospital Antwerp, Antwerp, Belgium
  • 2Department of Pathology, University Hospital Antwerp, Antwerp, Belgium
  • 3Department of Molecular Genetics, University Hospital Antwerp, Antwerp, Belgium
  • 4Department of Pathology, University Hospital Nijmegen, Nijmegen, The Netherlands
  • 5Department of Pathology, University Hospital Rotterdam, Rotterdam, The Netherlands
  • 6Goodheart Institute, Hemostasis Thrombosis Research Center, Rotterdam, The Netherlands
Further Information

Publication History

Publication Date:
29 June 2006 (online)

ABSTRACT

The clinical criteria according to the Polycythemia Vera Study Group (PVSG) do not distinguish between essential thrombocythemia (ET), thrombocythemia associated with early-stage polycythemia vera (PV) and prefibrotic chronic idiopathic myelofibrosis (CIMF). The criteria only classify the advanced stage of PV with increased red cell mass. The classification of myeloproliferative disorders (MPDs), proposed by the World Health Organization (WHO) in 2001, is a compromise of the clinical PVSG and WHO bone marrow criteria, and excludes early stages of ET and PV. The updated European clinical and pathological criteria combine the WHO bone marrow criteria with established and new clinical, laboratory, biological, and molecular MPD markers. This allows clinicians and pathologists to diagnose early-stage MPD and to differentiate ET, PV, and prefibrotic chronic idiopathic myelofibrosis (CIMF). Depending on laboratory tests and diagnostic criteria used, the population of the MPD patients defined as ET, PV, and CIMF are heterogeneous at the clinical, laboratory, and biological and pathological levels. The recent discovery of the JAK2 V617F mutation, which is the cause of a distinct trilinear MPD in its manifold clinical manifestations during long-term follow-up, increases the specificity of a positive JAK2 V617F polymerase chain reaction (PCR) test for the diagnosis of MPD (near 100%), but only half of the ET and CIMF patients according to the PVSG (sensitivity 50%) and the majority of PV patients (sensitivity 95%) are JAK2 V617F positive. A comparison of the laboratory features of JAK2 V617-positive and JAK2 wild-type ET patients clearly showed that JAK2 V617-positive ET is characterized by higher values for hemoglobin, hematocrit, and neutrophil counts; lower values for serum erythropoietin (EPO) levels, serum ferritin, and mean corpuscular volume; and by increased cellularity of the bone marrow in biopsy material. This indicates that JAK2 V617-positive ET patients, diagnosed according to the PVSG criteria, represent a “forme fruste of PV” consistent with early PV mimicking ET (JAK2 V617F trilinear MPD). In contrast, the JAK2 wild-type ET patients had significantly higher platelet counts and usually had a clinical picture of ET with normal serum EPO levels, PRV-1 expression, and leukocyte alkaline phosphatase score, and a typical WHO ET bone marrow picture. The clinical and pathological data on JAK2 V617F-positive MPD patients suggest that the JAK2 V617F mutation defines one disease entity with several sequential steps of ET, PV, and secondary myelofibrosis during long-term follow-up, and that the wild-type JAK2 MPDs may represent another distinct entity with a related but different molecular etiology. MPD-specific markers such as serum EPO, endogenous erythroid colony formation (EEC), and JAK2 V617F have high specificities, but the sensitivities are not high enough to detect the early stages of the MPDs, ET, PV, and prefibrotic CIMF. Bone marrow histopathology in addition to clinical, laboratory, biological, and molecular markers, including the JAK2 V617 PCR test, serum EPO, PRV-1, EEC, LAP score, peripheral blood parameters, and spleen size on echogram will detect the early stages of MPD and allows diagnostic differentiation of the three primary MPDs (ET, PV, and CIMF) in both JAK2 V617F-positive and JAK2 wild-type MPD patients.

REFERENCES

  • 1 Heuck G. Zwei Fälle von Leukämie mit eigentümlichen Blut resp Knochenmarks-befund.  Virchows Arch. 1879;  78 475
  • 2 Neumann E. Uber die Bedeutung des Knochenmarks für die Blutbildung.  Zentr Med Wiss. 1879;  6 689
  • 3 Vaquez M H. Sur une forme speciale de cyanose s'accompagne d'hyperglobulie excessive et persitante.  Comptes Rendues des Seances de la Societé de Biologie. 1892;  44 384-388
  • 4 Osler W. Chronic cyanosis with polycythaemia and enlarged spleen. A new clinical entity.  Am J Med Sci. 1903;  126 187-201
  • 5 Minot G R, Buckman T E. Erythremia (polycythemia rubra vera).  Am J Med Sci. 1923;  166 469-489
  • 6 Vaughan J M, Harrison C V. Leuko-erythroblastic anemia and myelosclerosis.  J Pathol Bacteriol. 1939;  48 339-352
  • 7 Moschowitz E. Biology of Disease. New York; Grune and Stratton 1948: 48-60
  • 8 Rosenthal M C. Extramedullary hematopoiesis: myeloid metaplasia.  Bull New Engl Med Cent. 1950;  12 154-160
  • 9 Dameshek W. Physiopathology and course of polycythemia vera as related to therapy.  JAMA. 1950;  142 790-797
  • 10 James C, Ugo V, Casadevall N, Constantinescu S N, Vainchenker W A. JAK2 mutation in myeloproliferative disorders: pathogenesis and therapeutic and scientific prospects.  Trends Mol Med. 2005;  11 546-554
  • 11 Dameshek W. Some speculations on the myeloproliferative syndromes.  Blood. 1951;  6 372-375
  • 12 Dameshek W, Baldini M. The Di Guglielmo syndrome.  Blood. 1958;  13 192-195
  • 13 Dameshek W. The Di Guglielmo syndrome revisted.  Blood. 1969;  34 567-572
  • 14 Michiels J J. Erythroleukemia and myelodysplastic syndromes. An historical appraisal and a personal view.  Leuk Lymphoma. 1993;  9 27-34
  • 15 Michiels J J, Van Der Meulen J, Brederoo P. The natural history of trilinear myelodysplastic syndrome and erythroleukemia.  Haematologica. 1997;  82 452-454
  • 16 Nowell P C, Hungerford D A. Chromosome studies on normal and leukemic leukocytes.  J Natl Cancer Inst. 1960;  25 85-109
  • 17 Glasser R M, Walker R I. Transitions among the myeloproliferative disorders.  Ann Intern Med. 1969;  71 285-307
  • 18 Ward H P, Block M H. The natural history of agnogenic myeloid metaplasia (AMM) and a critical evaluation of its relationship with myeloproliferative syndrome.  Medicine. 1971;  50 357-419
  • 19 Gilbert H S. The spectrum of myeloproliferative disorders.  Med Clin North Am. 1973;  57 355-393
  • 20 De Klein A, Van Kessel A G, Grosveld G G et al.. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukemia.  Nature. 1982;  300 765-767
  • 21 Groffen J, Stephenson J R, Heisterkamp N, De Klein A, Bartram C R, Grosveld G. Philadelphia chromosome breakpoints are clustered within a limited region, bcr, on chromosome 22.  Cell. 1984;  36 93-99
  • 22 Heisterkamp N, Stam K, Groffen J, De Klein A, Grosveld G. Structural organization of the bcr gene and its role in the Ph1 + translocation.  Nature. 1985;  315 758-761
  • 23 Lugo T G, Pendergast A M, Muller A J, Witte O N. Tyrosine kinase activity and transformation potency of bcr/abl oncogene products.  Science. 1990;  247 1079-1082
  • 24 Kelliher M A, McLaughin J, Witte O N, Rosenberg N. Induction of a chronic myelogenous-like syndrome in mice with v-abl and BCR/ABL.  Proc Nat Acad Sci USA. 1990;  87 6649-6653 , [erratum: 1990;87:9072]
  • 25 Daley G Q, Van Etten R A, Baltimore D. Induction of myelogenous leukemia in mice by the P210 bcr/abl gene of the Philadelphia chromosome.  Science. 1990;  247 824-830
  • 26 Pendergast A M, Muller A J, Havlik M H, Maru Y, Witte O N. BCR sequences essential for transformation by the BCR/ABL oncogene bind to ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner.  Cell. 1991;  66 161-171
  • 27 Druker B J, Talpaz M, Resta D J et al.. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia.  N Engl J Med. 2001;  344 1031-1037
  • 28 Druker B J, Sawyers C L, Kantarjian H et al.. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome.  N Engl J Med. 2001;  344 1038-1042
  • 29 Kantarjian H, Sawyers C, Hochhaus A et al.. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia.  N Engl J Med. 2002;  346 645-652
  • 30 Hughes T P, Kaeda J, Branford S et al.. Frequency of major responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia.  N Engl J Med. 2003;  349 1423-1432
  • 31 Kantarjian H, Taplpaz M, O'Brien S et al.. High-dose imatinib mesylate therapy in newly diagnosed Philadelphia chromosome-positive chronic phase chronic myeloid leukemia.  Blood. 2004;  103 2873-2878
  • 32 Michiels J J, Prins E, Hagemeijer A et al.. Philadelphia chromosome-positive thrombocythemia and megakaryoblast leukemia.  Am J Clin Pathol. 1987;  88 645-652
  • 33 Stoll D B, Peterson P, Exten R et al.. Clinical presentation and natural history of patients with essential thrombocythemia and the Philadelphia chromosome.  Am J Hematol. 1988;  27 77-83
  • 34 Morris C M, Fitzgerald P H, Hollings P E et al.. Essential thrombocythaemia and the Philadelphia chromosome.  Br J Haematol. 1988;  70 13-19
  • 35 LeBrun D P, Pinkerton P H, Sheridan B, Chen-Lai J, Dubé I D, Poldre P A. Essential thrombocythemia with the Philadelphia chromosome and the BRC/ABL gene rearrangement. An entity distinct from Philadelphia chromosome negative essential thrombocythemia.  Cancer Genet Cytogenet. 1991;  54 21-25
  • 36 Cervantes F, Colomer D, Vives-Corrons J L, Rozman C, Monserrat E. Chronic myeloid leukemia of thrombocythemic onset: a CML subtype with distinct hematological and molecular features?.  Leukemia. 1996;  10 1241-1243
  • 37 Thiele J, Wienhold S, Zankovich R, Fischer R. A histomorphometric analysis of trephine biopsies of bone marrow from 65 patients with chronic myeloid leukemia.  Anal Quant Cytol Histol. 1990;  12 103-116
  • 38 Michiels J, Ten Kate F WJ. Erythromelalgia in thrombocythemia of various myeloproliferative disorders.  Am J Hematol. 1992;  39 131-136
  • 39 Michiels J J, Bernemam Z W, Schroyens W et al.. Philadelphia (Ph) chromosome positive thrombocythemia without features of chronic myeloid leukemia in peripheral blood: natural history and diagnostic differentiation from Ph-negative essential thrombocythemia.  Ann Hematol. 2004;  83 504-512
  • 40 Franzen S, Strenger G, Zajicek J. Microplanimetric studies on megakaryocytes in chronic granulocytic leukemia and polycythemia vera.  Acta Haematol. 1961;  26 182-193
  • 41 Lundin P M, Ridell B, Weinfeld A. The significance of bone marrow morphology for the diagnosis of polycythemia vera.  Scand J Haematol. 1972;  9 271-282
  • 42 Wasserman L R. Polycthemia vera, its course and treatment: relation to myeloid metaplasia and leukemia.  Bull NY Acad Med. 1954;  30 343-375
  • 43 Wasserman L R, Berk P D, Berlin N I. Polycythemia vera and the myeloproliferative disorders. Philadelphia; WB Saunders 1995
  • 44 Pearson T C, Wetherley-Mein G. The course and complications of idiopathic erythrocytosis.  Clin Lab Haematol. 1979;  1 189-196
  • 45 Najean Y, Triebel F, Dresch C. Pure erythrocytosis: reappraisal of a study of 51 patients.  Am J Hematol. 1981;  10 129-136
  • 46 Prchal J F, Axelrad A E. Bone marrow responses in polycythemia vera.  N Engl J Med. 1974;  290 1382 , (letter)
  • 47 Temerinac S, Klippel S, Strunck E et al.. Cloning of PRV-1, a novel member of the uPAR receptor superfamily, which is over expressed in polycythemia rubra vera.  Blood. 2000;  95 2569-2576
  • 48 Pahl H L. Towards a molecular understanding of polycythemia rubra vera.  Eur J Biochem. 2000;  267 3395-3401
  • 49 Klippel S, Strunck E, Termerinac S et al.. Quantification of PRV-1 expression, a molecular marker for the diagnosis of polycythemia vera.  Blood. 2001;  98 470a
  • 50 Pahl H L. Polycythaemia vera: will new markers help us answer old questions?.  Acta Haematol. 2002;  108 120-131
  • 51 Dobo I, Mossuz P, Campos I et al.. Comparison of four serum-free, cytokine-free media for analysis of endogenous erythroid colony growth in polycythemia vera and essential thrombocythemia.  Hematol J. 2001;  2 396-403
  • 52 Correa P N, Eskinazi D, Axelrad A A. Circulating erythroid progenitors in polycythemia vera are hypersensitive to insulin-like growth factor-1.  Blood. 1994;  83 1-4
  • 53 Mirza A M, Correa P N, Axelrad A A. Increased basal and induced tyrosine phosphorylation of the insulin-like growth factor 1 receptor beta subunit in circulating mononuclear cells of patients with polycythemia vera.  Blood. 1995;  86 877-882
  • 54 Mirza A M, Ezzat S, Axelrad A A. Insulin-like growth factor binding protein-1 is elevated in patients with polycythemia vera and stimulates erythroid burst formation in vitro.  Blood. 1997;  89 1862-1869
  • 55 Juvonen E, Ikkala E, Oksanen K, Ruutu T. Megakaryocyte and erythroid colony formation in essential thrombocythemia and reactive thrombocytosis: diagnostic value and correlation to complications.  Br J Haematol. 1993;  83 192-197
  • 56 Florensa L, Bessis C, Woessner S et al.. Endogenous megakaryocyte and erythroid colony formation from blood in essential thrombocythemia.  Leukemia. 1995;  9 271-273
  • 57 Jantunen R, Juvonen E, Ikkala E et al.. Essential thrombocythemia at diagnosis: causes of diagnostic evaluation and presence of positive diagnostic findings.  Ann Hematol. 1998;  77 101-106
  • 58 Bellucci S, Michiels J J. Spontaneous proliferative megakaryopoiesis and platelet hyper-reactivity in essential thrombocythemia: is thrombopoietin the link?.  Ann Hematol. 2000;  79 51-58
  • 59 Axelrad A A, Eskinazi D, Correa P N, Amata D. Hypersensitivity of circulating progenitor cells to megakaryocyte growth and development factor (PEG-rHU MGDF) in essential thrombocythemia.  Blood. 2000;  96 3310-3321
  • 60 Axelrad A A, Eskinazi D, Amato D. Does hypersensitivity of progenitor cells to normal cytokine(s) play a role in the pathogenesis of idiopathic myelofibrosis with myeloid metaplasia?.  Blood. 1999;  94(suppl 1) 2866
  • 61 Griesshammer M, Klippel S, Strunk E et al.. PRV-1 mRNA expression discriminates two types of essential thrombocythemia.  Ann Hematol. 2004;  83 364-370
  • 62 Goerttler P S, Steimle C, Maerz E et al.. The JAK2 V617F mutation, PRV-1 over expression and EEC formation define a similar cohort of MPD patients.  Blood. 2005;  106 2862-2864
  • 63 Kralovics R, Teo S S, Buser A S et al.. Altered gene expression in myeloproliferative disorders correlates with activation of signalling by the V617F mutation of JAK2.  Blood. 2005;  106 3374-3376
  • 64 James C, Ugo V, Le Couedic P F et al.. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythemia vera.  Nature. 2005;  434 1144-1148
  • 65 Kaushansky K. On the origin of the chronic myeloproliferative disorders: it makes all sense.  Blood. 2005;  105 4187-4190
  • 66 Goldman J M. A unifying mutation in chronic myeloproliferative disorders.  N Engl J Med. 2005;  352 1744-1745
  • 67 Cazzola M, Skoda R. Gain of function, loss of control. A molecular basis for chronic myeloproliferative disorders.  Haematologica. 2005;  90 871-874
  • 68 Geddis A E, Linden H M, Kaushansky K. Thrombopoietin: a pan-hematopoietic cytokine.  Cytokine Growth Factor Rev. 2002;  13 61-73
  • 69 Tong W, Zhang J, Lodish H F. Lnk inhibits erythropoiesis and EPO-dependent JAK2 activation and downstream signalling pathways.  Blood. 2005;  105 4604-4612
  • 70 Levine R L, Wadleigh M, Cools J et al.. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia and myeloid metaplasia with myelofibrosis.  Cancer Cell. 2005;  7 387-397
  • 71 Kralovics R, Passamonti F, Buser A S et al.. A gain-of-function mutation of JAK2 in myeloproliferative disorders.  N Engl J Med. 2005;  352 1779-1790
  • 72 Baxter E J, Scott L M, Campbell P J et al.. Acquired mutation of the tyrosine kinase in human myeloproliferative disorders.  Lancet. 2005;  365 1054-1061
  • 73 Zhao R, Xing S, Li Z et al.. Identification of an acquired JAK2 mutation in polycythemia vera.  J Biol Chem. 2005;  280 22788-22792
  • 74 Jones A V, Kreil S, Xoi K et al.. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders.  Blood. 2005;  106 2162-2168
  • 75 Wolanskyj A P, Lasho T L, Schwager S M et al.. JAK2 V617 mutation in essential thrombocythaemia: clinical associations and long-term relevance.  Br J Haematol. 2005;  131 208-213
  • 76 Antonioli E, Guglielmelli P, Pancrazzi A et al.. Clinical implications of the JAK2 V617F mutation in essential thrombocythemia.  Leukemia. 2005;  19 1847-1849
  • 77 Levine R L, Loriaux M, Huntly B JP et al.. The JAK2 V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia.  Blood. 2005;  106 3377-3379
  • 78 Steensma D P, Dewald M, Lasho T L et al.. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both atypical myeloproliferative disorders and the myelodysplastic syndrome.  Blood. 2005;  106 1207-1209
  • 79 Jelinek J, Oki Y, Gharibyan V et al.. JAK2 mutation 1849G > T is rare in acute leukemias but can be found in CMML, Philadelphia-chromosome negative CML and megakaryocytic leukemia.  Blood. 2005;  106 3370-3373
  • 80 Campbell P, Scott L M, Buck G et al.. Definition of essential thrombocythemia and relation of essential thrombocythemia to polycythaemia vera based on JAK2 V617F mutation status: a prospective study.  Lancet. 2005;  366 1945-1953
  • 81 Campbell P J, Griesshammer M, Dehmer K et al.. V616F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis.  Blood. 2006;  106 2098-2100
  • 82 Tefferi A, Terra L, Susan M et al.. The JAK2 V617F tyrosine kinase mutation in myelofibrosis with myeloid metaplasia: lineage specificity and clinical correlates.  Br J Haematol. 2005;  131 320-328
  • 83 Tefferi A, Lasho T L, Schwager S M et al.. The clinical phenotype of wild-type, heterozygous and homozygous JAK2 V617F in polycythemia vera.  Cancer. 2006;  106 631-635
  • 84 Michiels J J, Berneman Z, Van Bockstaele D, Van Der Planken M, De Raeve H, Schroyens W. Clinical and laboratory features, pathobiology of platelet-mediated microvascular disturbances, major thrombosis and bleeding complications and the molecular etiology of essential thrombocythemia, polycythemia vera: diagnostic and therapeutic implications.  Semin Thromb Hemost. 2006;  32 174-207
  • 85 Modan B, Lilienfeld A M. Polycythemia vera and leukemia.  Medicine. 1965;  44 305-344
  • 86 Kurnick J E, Ward H P, Block M H. Bone marrow sections in the differential diagnosis of polycythemia.  Arch Pathol. 1972;  94 489-499
  • 87 Berlin N I. Diagnosis and classification of the polycythemias.  Semin Hematol. 1975;  12 339-351
  • 88 Ellis J T, Silver R T, Coleman M, Geller S A. The bone marrow in polycythemia vera.  Semin Hematol. 1975;  12 433-444
  • 89 Foot N C, Foot E B. A technique of silver impregnation for general laboratory purposes.  Am J Pathol. 1932;  8 245-254
  • 90 Roberts B E, Miles D W, Woods C G. Polycythaemia vera and myelosclerosis. A bone marrow study.  Br J Haematol. 1969;  16 75-85
  • 91 Ikkala E, Rapola J, Kotilainen M. Polycythemia vera and myelofibrosis.  Scand J Haematol. 1967;  4 453-464
  • 92 Epstein E, Kretz J. Uber einen Fall von hochgradiger Thrombozytenvermehrung.  Klin Wschr. 1930;  9 1177-1178
  • 93 Epstein E, Kretz J. Hämorrhagische Thrombocythämie bei vasculärer Schrupfmilz.  Virchows Arch A Pathol Anal Histopathol. 1934;  293 233-247
  • 94 Gunz F W. Hemorrhagic thrombocythemia.  Blood. 1960;  15 706-723
  • 95 Laszlo J. Myeloproliferative disorders (MPD): myelofibrosis, myelosclerosis, extramedullary hematopoiesis, undifferentiated MPD and hemorrhagic thrombocythemia.  Semin Hematol. 1975;  12 409-432
  • 96 Michiels J J. Erythromelalgia and thrombocythemia [thesis]. Erasmus University, Rotterdam 1981
  • 97 Van Genderen P JJ, Michiels J J. Erythromelalgic thrombotic and hemorrhagic thrombocythemia.  Presse Med. 1994;  23 73-77
  • 98 Annetts D L, Tracy G D. Idiopathic thrombocythemia presenting with ischemia of the toes.  Med J Aust. 1966;  2 180-182
  • 99 Vreeken J, Van Aken W S. Spontaneous aggregation of blood platelets as a cause of idiopathic and recurrent painful toes and fingers.  Lancet. 1971;  2 1395-1397
  • 100 Preston F E, Emmanuel I G, Winfield D A, Malia R G. Essential thrombocythemia and peripheral gangrene.  BMJ. 1974;  3 548-552
  • 101 Singh A K, Weitherley-Mein G. Microvascular occlusive lesions in primary thrombocythemia.  Br J Haematol. 1977;  36 553-564
  • 102 Redding K G. Thrombocythemia as a cause of erythromelalgia.  Arch Dermatol. 1977;  113 468-471
  • 103 Vera J C. Antiplatelet agents in the treatment of thrombotic complications of primary thrombocythemia.  Can Med Assoc J. 1979;  120 60-61
  • 104 Michiels J J, Abels J, Steketee J, vanVliet H HDM, Vuzevski V D. Erythromelalgia caused by platelet-mediated arteriolar inflammation and thrombosis in thrombocythemia.  Ann Intern Med. 1985;  102 466-471
  • 105 Murphy S, Iland H, Rosenthal D, Laszlo J. Essential thrombocythemia: an interim report from the Polycythemia Vera Study Group.  Semin Hematol. 1986;  23 177-182
  • 106 Lengfelder E, Hochhaus A, Kronawitter U et al.. Should a platelet count of 600 × 109/l be used as a diagnostic criterion in essential thrombocythemia? An analysis of the natural course including early stages.  Br J Haematol. 1998;  100 15-23
  • 107 Cervantes F, Marti J M, Lopez-Guillermo A, Piera C, Feliu E, Rozman C. Iron stores in essential thrombocythemia.  Blut. 1989;  58 291-294
  • 108 Burkhardt R, Kronseder A. Megakaryocytäre Myelose: Ursache der idiopathischen Thrombozythämie.  Fortschr Med. 1977;  95 1261-1266
  • 109 Burkhardt R, Frisch B, Bartl R. Bone marrow biopsies in haematological disorders.  J Clin Pathol. 1982;  8 257-284
  • 110 Burkhardt R, Bartl R, Beil E et al.. Myelofibrosis-osteomyelosclerosis syndrome.  Adv Biosci. 1975;  16 9-56
  • 111 Burkhardt R, Bartl R, Jäger K et al.. Chronic myeloproliferative disorders (CMPD).  Pathol Res Pract. 1984;  197 131-186
  • 112 Burkhardt R, Bartl R, Jäger K et al.. Working classification of chronic myeloproliferative disorders based on histological, haematological, and clinical findings.  J Clin Pathol. 1986;  39 237-252
  • 113 Burkhardt R. Bone marrow in megakaryocytic disorders.  Hematol Oncol Clin North Am. 1988;  2 695-733
  • 114 Burkhardt R, Jäger K, Kettner G, Helmer G. Chronic myeloproliferative disorders: prognostic importance of new working classification.  J Clin Pathol. 1990;  43 357-364
  • 115 Georgii A, Vykoupil K F. Histologisch-bioptische Klazzifizierung myeloproliferatives Erkrankungen. In: Tacher A, Höcker P der Myelopoiese, Leukämien, myeloproliferatives Syndrom, Polyzythämie. München, Germany; Urban & Schwarzenberg 1976
  • 116 Thiele J, Georgii A, Vykoupil K F. Ultrastructure of chronic megakaryocytic granulocytic myelosis.  Blut. 1976;  32 433-438
  • 117 Thiele J, Ballard A C, Georgii A, Vykoupil K F. Chronic megakaryocytic granulocytic myelosis: an electron microscopic study. Megakaryocytes and thrombocytes.  Virchows Arch Pathol Anat Histol. 1977;  373 191-211
  • 118 Georgii A, Vykuopli K F, Thiele J. Chronic megakaryocytic granulocytic myelosis: CMGM.  Virchows Arch A Pathol Anat Histopathol. 1980;  389 253-268
  • 119 Georgii A, Thiele J, Vykoupil K F. Osteomyelofibrosis/-sclerosis: a histological and cytogenetic study on core biopsies of the bone marrow.  Virchows Arch A Pathol Anat Histopathol. 1980;  389 269-286
  • 120 Thiele J, Holgado S, Choritz H, Georgii A. Density distribution and size of megakaryocytes in inflammatory reactions of the bone marrow (myelitis) and chronic myeloproliferative disorders.  Scand J Haematol. 1983;  31 329-341
  • 121 Thiele J, Funke S, Holgado S, Choritz H, Georgii A. Megakaryopoiesis in chronic myeloproliferative diseases.  Anal Quant Cytol. 1984;  6 155-166
  • 122 Vykoupil K F, Krech R, Thiele J, Windus G, Basse G, Georgii A. Die Thrombocythämie (thrombocytose) als klinischer Diagnose: histologische Befunde am Knochenmark.  Verh Dtsch Ges Path. 1983;  67 260-265
  • 123 Georgii A. Histopathologie und Klinik der chronischen, myeloproliferatives Erkrankungen.  Verh Dtsch Ges Path. 1983;  67 214-234
  • 124 Thiele J, Funke S, Holgado S, Choritz H, Georgii A. Megakaryopoiesis in chronic myeloproliferative diseases.  Anal Quant Cytol. 1984;  6 155-167
  • 125 Kiladjian J J, Elkassar N, Hetet G et al.. Analysis of JAK2 mutation in essential thrombocythemia (ET) patients with monoclonal and polyclonal X-chromosome inactivation patterns (XCIPs).  Leukemia. 2006;  , In press
  • 126 Mathé G, Rappaport H. Histological and Cytological Typing of Neoplastic Diseases of Haematopoiesis and Lymphoid Tissues. No 14. International Histological Classification of Tumours. Geneva, Switzerland; WHO 1976
  • 127 Thiele J, Moedder B, Kremer B, Zankovich R, Fischer R. Chronic myeloproliferative diseases with an elevated platelet count (in excess of 1000.000/u/L): a clinicopathological study of 46 cases with special emphasis on primary (essential) thrombocythemia.  Hematol Pathol. 1987;  1 227-237
  • 128 Thiele J, Zankovich R, Schneider G, Kremer B, Fischer R, Diehl V. Primary (essential) thrombocythemia versus polycythemia rubra vera. A histomorphometric analysis of bone marrow features in trephine biopsies.  Anal Quant Cytol Histol. 1988;  10 375-382
  • 129 Thiele J, Schneider G, Hoeppner B, Wienhold S, Zankovich R, Fischer R. Histomorphometry of bone marrow biopsies in chronic myeloproliferative disorders with associated thrombocytosis - features of significance for the diagnosis of primary (essential) thrombocythemia.  Virchows Arch A Pathol Anat Histopathol. 1988;  413 407-417
  • 130 Thiele J, Zankovich R, Steinberg T, Kremer B, Fischer R, Diehl V. Primary (essential) thrombocythemia versus hyperplastic stages of agnogenic myeloid metaplasia with thrombocytosis: a critical evaluation of clinical and histomorphological data.  Acta Haematol. 1989;  81 192-202
  • 131 Thiele J, Zankovich R, Steinberg T, Fischer R, Diehl V. Agnogenic myeloid metaplasia (AMM)-correlation of bone marrow lesions with laboratory data: a longitudinal clinicopathological study on 114 patients.  Hematol Oncol. 1989;  7 327-343
  • 132 Thiele J, Steinberg T, Zankovich R, Fischer R. Primary myelofibrosis-osteomyelosclerosis (agnogenic myeloid metaplasia): correlation of clinical findings with bone marrow histopathology and prognosis.  Anticancer Res. 1989;  9 429-436
  • 133 Thiele J, Hoeppner B, Zankovich R, Fischer R. Histomorphometry of bone marrow biopsies in primary osteomyelofibrosis/-sclerosis (agnogenic myeloid metaplasia)-correlations between clinical and morphological features.  Virchows Arch A Pathol Anat Histopathol. 1989;  415 191-202
  • 134 Thiele J, Wagner S, Degel C et al.. Megakaryocytic precursors (pro- and megakaryoblasts) in bone marrow tissue from patients with reactive thrombocytosis, polycythemia vera and primary (essential) thrombocythemia. An immunomorphometric study.  Virchows Arch B Cell Pathol Inc Mol Pathol. 1990;  58 295-302
  • 135 Greenberg B R, Wilson F D, Woo L, Jenks H M. Cytogenetics of fibroblasts colonies in Ph translocation in a patient with primary thrombocythemia.  Br J Haematol. 1981;  47 571-575
  • 136 Jacobson R J, Salo A, Fialkov P J. Agnogenic myeloid metaplasia: a clonal proliferation of haematopoietic stem cells with secondary myelofibrosis.  Blood. 1978;  51 189-194
  • 137 Georgii A, Vykoupil K F, Buhr Th, Choritz H, Doehler U, Kaloutsi V, Werner M. Chronic myeloproliferative disorders in bone marrow biopsies.  Path Res Pract. 1990;  186 3-27
  • 138 Thiele J, Kvasnicka H M, Werden C, Zankovich R, Diehl V, Fischer R. Idiopathic primary osteo-myelofibrosis: A clinico-pathological study on 208 patients wit special emphasis on evolution of disease features, differentiation from essential thrombocythemia and variables of prognostic impact.  Leuk Lymphoma. 1996;  22 303-317
  • 139 Georgii A, Buhr T, Buesche G, Kreft A, Choritz H. Classification and staging of Ph-negative myeloproliferative disorders by histopathology from bone marrow biopsies.  Leuk Lymphoma. 1996;  22(suppl 1) 15-29
  • 140 Georgii A, Buesche G, Kreft A. The histopathology of chronic myeloproliferative diseases.  Baillières Clin Haematol. 1998;  11 721-749
  • 141 Buhr T, Georgii A, Schuppan O, Amor A, Kaloutsy V. Histologic findings in bone marrow biopsies of patients with thrombocythemic cell counts.  Ann Hematol. 1992;  64 286-291
  • 142 Buhr T, Georgii A, Choritz H. Myelofibrosis in chronic myeloproliferative disorders. Incidence among subtypes according to the Hannover Classification.  Pathol Res Pract. 1993;  189 121-132
  • 143 Thiele J, Windeker R, Kvasnicka H M, Titius B R, Zankovich R, Fischer R. Erythropoietin in primary (idiopathic) osteomyelofibrosis: quantitation, PCNA-reactivity and prognostic impact.  Am J Hematol. 1994;  46 36-42
  • 144 Michiels J J. The myeloproliferative disorders. An historical appraisal and personal experiences.  Leuk Lymphoma. 1996;  22(suppl 1) 1-14
  • 145 Michiels J J. Diagnostic criteria of the myeloproliferative disorders (MPD) essential thrombocythemia, polycythemia vera and chronic megakaryocytic granulocytic metaplasia.  Neth J Med. 1997;  51 57-64
  • 146 Michiels J J, Juvonen E. Proposal for revised diagnostic criteria of essential thrombocythemia and polycythemia vera by the Thrombocythemia Vera Study Group.  Semin Thromb Hemost. 1997;  23 339-347
  • 147 Thiele J, Kvasnicka H M, Diehl V, Fischer R, Michiels J J. Clinicopathological diagnosis and differential criteria of thrombocythemias in various myeloproliferative disorders by histopathology, histochemistry and immunostaining from bone marrow biopsies.  Leuk Lymphoma. 1999;  33 207-218
  • 148 Michiels J J, Barbui T, Fruchtman S M et al.. Diagnosis and treatment of polycythemia vera and possible future study designs of the PVSG.  Leuk Lymphoma. 2000;  36 239-253
  • 149 Thiele J, Kvasnicka H M, Fischer R. Histochemistry and morphometry on bone marrow biopsies in chronic myeloproliferative disorders: aids to diagnosis and classification.  Ann Hematol. 1999;  78 495-506
  • 150 WHO classification of the chronic myeloproliferative diseases (CMPD) polycythemia vera, chronic idiopathic myelofibrosis, essential thrombocythemia and CMPD unclassifiable. In: Jaffe SS, Harris NL, Sterm A, Vardiman JW WHO Classification of Tumours. Tumours of Haemtopoiesis and Lymphoid Tissues. Lyon, France; IARC 2001: 31-42
  • 151 Dickstein J I, Vardiman J W. Issues in the pathology and diagnosis of the chronic myeloproliferative disorders and the myelodysplastic syndromes.  Am J Clin Pathol. 1993;  99 513-525
  • 152 Anastasi J, Vardiman W. Chronic myelogenous leukemia and the chronic myeloproliferative disorders. In: Knowles DM Neoplastic Hematopathology. Philadelphia, PA; Lippincott Williams & Wilkins 2001: 1745-1777
  • 153 Vardiman J W. Myelodysplastic syndromes, chronic myeloproliferative diseases, and myelodysplastic/myeloproliferative diseases.  Semin Diagn Pathol. 2003;  20 154-179
  • 154 Michiels J J, Thiele J. Clinical and pathological criteria for the diagnosis of essential thrombocythemia, polycythemia vera and idiopathic myelofibrosis (agnogenic myeloid metaplasia).  Int J Hematol. 2002;  76 133-145
  • 155 Michiels J J. Bone marrow histopathology and biological markers as specific clues to the differential diagnosis of essential thrombocythemia, polycythemia vera and prefibrotic or fibrotic myeloid metaplasia.  Hematol J. 2004;  5 93-102
  • 156 Michiels J J, Kvasnicka H M, Thiele J. Myeloproliferative Disorders: Current Perspectives on Diagnostic Criteria, Histopathology and Treatment. Munich, Germany; Verlag ME Uwe Grunwald 2005
  • 157 Thiele J, Kvasnicka H M. A critical reappraisal of the WHO classification of the chronic myeloproliferative disorders.  Leuk Lymphoma. 2006;  47 381-396
  • 158 Thiele J, Kvasnicka H M, Boeltken B, Zankovich R, Diehl V, Fischer R. Initial (prefibrotic) stages of idiopathic (primary) myelofibrosis (IMF): a clinicopathological study.  Leukemia. 1999;  13 1741-1742
  • 159 Thiele J, Kvasnika H M, Zankovich R, Diehl V. Relevance of bone marrow features in the differential diagnosis between essential thrombocythemia and early stage idiopathic myelofibrosis.  Haematologica. 2000;  85 1126-1134
  • 160 Thiele J, Kvasnicka H M, Zankovich R, Diehl V. Clinical and morphological criteria for the diagnosis of prefibrotic idiopathic (primary) myelofibrosis.  Ann Hematol. 2001;  80 160-165
  • 161 Thiele J, Kvasnicka H M, Zankovich R, Diehl V. Early stage idiopathic (primary) myelofibrosis: current issues of diagnostic features.  Leuk Lymphoma. 2002;  43 1035-1041
  • 162 Thiele J, Kvasnicka H M. Diagnostic differentiation of essential thrombocythemia from thrombocythemia associated with chronic idiopathic myelofibrosis by discriminate analysis of bone marrow features.  Histol Histopathol. 2003;  18 93-102
  • 163 Thiele J, Kvasnicka H M, Schmitt-Graeff A, Diehl V. Dynamics of fibrosis in chronic idiopathic (primary) myelofibrosis during therapy: a follow-up on 308 patients.  Leuk Lymphoma. 2003;  44 949-953
  • 164 Thiele J, Kvasnicka H M. Chronic myeloproliferative disorders with thrombocythemia: a comparative study of two classifications systems (PVSG-WHO) on 839 patients.  Ann Hematol. 2003;  82 148-152
  • 165 Thiele J, Kvasnicka H M. Prefibrotic chronic myelofibrosis-a diagnostic enigma?.  Acta Haematol. 2004;  111 155-159
  • 166 Thiele J, Kvasnicka H M, Diehl V. Standardization of bone marrow features-does it work in hematopathology for histological discrimination of different disease patterns?.  Histopathology. 2005;  20 633-644
  • 167 Thiele J, Kvasnicka H M, Orazi A. Bone marrow histopathology in myeloproliferative disorders-current diagnostic approach.  Semin Hematol. 2005;  42 184-195
  • 168 Thiele J, Kvasnicka H M. Hematologic findings in chronic idiopathic myelofibrosis.  Semin Oncol. 2005;  32 380-394
  • 169 Thiele J, Kvasnicka H M, Zankovich R, Diehl V. The value of bone marrow histopathology for the differentiation between early stage polycythemia vera and secondary (reactive) polycythemias.  Haematologica. 2001;  86 368-374
  • 170 Thiele J, Kvasnicka H M, Muehlhausen K, Walter S, Zankovich R, Diehl V. Polycythemia rubra vera versus secondary polycythemias. A clinicopathological evaluation of distinctive features in 199 patients.  Pathol Res Pract. 2001;  197 77-84
  • 171 Thiele J, Kvasnicka H M, Diehl V. Bone marrow features of diagnostic impact in erythrocytosis.  Ann Hematol. 2005;  84 362-367
  • 172 Thiele J, Kvasnicka H M, Diehl V. Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia.  Acta Haematol. 2005;  113 213-219
  • 173 Thiele J, Kvasnicka H M. Diagnostic impact of bone marrow histopathology in polycythemia vera (PV).  Histol Histopathol. 2005;  20 317-328
  • 174 Tefferi A. Polycythemia vera: a comprehensive review and clinical recommendations.  Mayo Clin Proc. 2003;  78 174-194
  • 175 McMullin M F, Bareford D, Campell P et al.. Guidelines for the diagnosis, investigation and management of polycythaemia/erythrocytosis.  Br J Haematol. 2005;  130 174-195
  • 176 De Stefano V, Teofili L, Leone G, Michiels J J. Spontaneous erythroid colony formation as the clue to an underlying myeloproliferative disorder in Budd-Chiari syndrome or portal vein thrombosis.  Semin Thromb Hemost. 1997;  23 411-418
  • 177 Chait Y, Condat B, Cazals-Hatem D et al.. Relevance of the criteria commonly used to diagnose myeloproliferative disorders in patients with splanchnic vein thrombosis.  Br J Haematol. 2005;  129 553-560
  • 178 Liu E, Jelinek J, Pastore Y D, Guan Y, Prchal J F, Prchal J T. Discrimination of polycythemias and thrombocythemias by novel, simple accurate clonality assays and comparison with PRV-1 expression and BFU:E response to erythropoietin.  Blood. 2003;  101 3294-3301
  • 179 Shih L-Y, Lee C-T. Identification of masked polycythemia vera from patients with idiopathic marked thrombocytosis by endogenous erythroid colony assay.  Blood. 1994;  83 744-748
  • 180 Westwood N B, Pearson T C. Diagnostic applications of haematopoietic progenitor culture techniques in polycythaemias and thrombocythaemias.  Leuk Lymphoma. 1996;  22 95-103
  • 181 Dobo I, Donnard M, Giridon F et al.. Standardization and comparison of endogenous erythroid colony assays performed with bone marrow or blood progenitors for the diagnosis of polycythemia vera.  Hematol J. 2004;  5 161-167
  • 182 Florensa L, Besses C, Zamora L et al.. Endogenous erythroid and megakaryocytic circulating progenitors, HUMARA clonality assay, and PRV-1 expression are useful tools for diagnosis of polycythemia vera and essential thrombocythemia.  Blood. 2004;  103 2427-2428
  • 183 Messinezy M, Westwood N B, El-Hemaida I, Marsden J T, Sherwood R S, Pearson T C. Serum erythropoietin values in erythrocytosis and in primary thrombocythaemia.  Br J Haematol. 2002;  117 47-53
  • 184 Cotes P M, Dore C J, Tin J A et al.. Determination of serum immunoreactive erythropoietin in the investigation of erythrocytosis.  N Engl J Med. 1986;  315 283-287
  • 185 Birgegard G, Wide L. Serum erythropoietin in the diagnosis of polycythemia and after phlebotomy treatment.  Br J Haematol. 1992;  81 603-606
  • 186 Messinezy M, Westwood N B, Woodstock S P, Strong R M, Pearson T C. Low serum erythropoietin: a strong diagnostic criterion of primary polycythaemia even at normal haemoglobin levels.  Clin Lab Haematol. 1995;  17 217-220
  • 187 Carneskog J, Kutti J, Wadenvik H, Lundberg P A, Lindstedt G. Plasma erythropoietin by high-detectability immunoradiometric assay in untreated patients with polycythemia vera and essential thrombocythemia.  Eur J Haematol. 1998;  60 278-282
  • 188 Griesshammer M, Kubanek B, Beneke H et al.. Serum erythropoietin and thrombopoietin levels in patients with essential thrombocythemia.  Leuk Lymphoma. 2000;  36 533-538
  • 189 Johansson P, Andreason B, Safai-Kutti S et al.. The presence of a significant association between elevated PRV-1 mRNA expression and low plasma erythropoietin concentration in essential thrombocythemia.  Eur J Haematol. 2003;  70 358-362
  • 190 Mossuz P, Giridon F, Latger-Cannard V et al.. Diagnostic value of serum erythropoietin level in patients with absolute erythrocytosis.  Haematologica. 2004;  89 1194-1198
  • 191 Tefferi A, Silverstein M N, Noël P. Agnogenic myeloid metaplasia.  Semin Oncol. 1995;  22 327-333
  • 192 Reilly J T. Pathogenesis of idiopathic myelofibrosis: present status and future directions.  Br J Haematol. 1994;  88 1-8
  • 193 Barosi G, Ambrosetti A, Finelli A et al.. The Italian consensus conference on diagnostic criteria for myelofibrosis with myeloid metaplasia.  Br J Haematol. 1999;  104 730-737
  • 194 Barosi G. Myelofibrosis with myeloid metaplasia: diagnostic definition and prognostic classification for clinical studies and treatment guidelines.  J Clin Oncol. 1999;  17 2954-2970
  • 195 Tefferi A. Myelofibrosis with myeloid metaplasia.  N Engl J Med. 2000;  342 1255-1265
  • 196 Dingli D, Mesa R A, Tefferi A. Myelofibrosis with myeloid metaplasia: new developments in pathogenesis and treatment.  Intern Med. 2004;  43 540-547
  • 197 Florena A M, Tripodi C, Iannitto E, Porcasi R, Ingrao S, Franco V. Value of bone marrow biopsy in essential thrombocythemia.  Haematologica. 2004;  89 911-919
  • 198 Le Bousse-Kerdiles M C, Martyré M C. Dual implication of fibrogenic cytokines in the pathogenesis of fibrosis and myeloproliferation in myeloid metaplasia with myelofibrosis.  Ann Hematol. 1999;  78 437-444
  • 199 Kahn A, Bernard J F, Cottreau D, Marie J, Bovin P A. G-6PD variant with heterozygous expression in blood cells of a woman with primary myelofibrosis.  Humangenetik. 1975;  30 41-46
  • 200 Adamson J W, Fialkov P J, Murphy S, Prchal J F, Steinmann L. Polycythemia vera: stem-cell and probable clonal origin of the disease.  N Engl J Med. 1976;  295 913-916
  • 201 Fialkow P J, Faquet G B, Jacobson R J, Vaida K, Murphy S. Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell.  Blood. 1981;  58 916-919
  • 202 El-Kassar N, Hetet G, Briere J, Grandschamp B. Clonality analysis of hematopoiesis in essential thrombocythemia: advantages of studying T lymphocytes and platelets.  Blood. 1997;  89 128-134
  • 203 Harrison C N, Gale R E, Machin S J, Linch D C. A large proportion of patients with the diagnosis of essential thrombocythemia do not have a clonal disorder and may be at lower risk of thrombosis.  Blood. 1999;  93 417-424
  • 204 Shih L Y, Lin T L, Lai C L et al.. Predictive value of X-chromosome inactivation patterns and clinicopathological parameters for vascular complications in females with essential thrombocythemia.  Blood. 2002;  100 1596-1601
  • 205 Buschle M, Janssen J WG, Drexler H, Lyons T, Anger B, Bartram C R. Evidence for pluripotent stem cell origin of idiopathic myelofibrosis: clonal analysis of a case characterized by an N-ras gene mutation.  Leukemia. 1988;  2 658-660
  • 206 Kreipe H, Jacquet K, Feigner J, Radzun H J, Parwaresch M R. Clonal granulocytes and bone marrow cells in the cellular phase of agnogenic myeloid metaplasia.  Blood. 1991;  78 1814-1817
  • 207 Sato Y, Suda T, Suda J. Multilineage expression of haematopoietic precursors with abnormal clone in idiopathic myelofibrosis.  Br J Haematol. 1986;  64 657-667
  • 208 Wang J C, Lange H D, Lichter S, Weinstein M, Benn P. Cytogenetic studies of bone marrow fibroblasts cultured from patients with myelofibrosis and myeloid metaplasia.  Br J Haematol. 1992;  80 184-188
  • 209 Battegay E J, Thompson C, Nissen C, Gudat F, Speck B. Endogenous megakaryocytic colonies from peripheral blood in precursor cells.  Eur J Haematol. 1989;  42 321-326
  • 210 Chikkappa G, Carstein A L, Chanana A D, Chandra P, Cronkite E P. Increased granulocytic, erythrocytic and megakaryocytic progenitors in myelofibrosis with myeloid metaplasia.  Am J Hematol. 1978;  4 121-131
  • 211 Douay L, Laporte J P, Lefrancois G et al.. Blood and spleen haematopoiesis in patients with myelofibrosis.  Leuk Res. 1987;  11 725-730
  • 212 Douer D, Fabian I, Cline M J. Circulating pluripotent haematopoietic cells in patients with myeloproliferative disorders.  Br J Haematol. 1983;  54 373-381
  • 213 Han Z C, Brière J, Nedellee G et al.. Characteristics of circulating megakaryocytic progenitors (CFU-MK) in patients with myelofibrosis.  Eur J Haematol. 1988;  40 130-135
  • 214 Thiele J, Kvasnicka H M, Diehl V. Bone marrow CD34+ progenitor cells in Philadelphia chromosome-negative chronic myeloproliferative disorders: a clinicopathological study on 575 patients.  Leuk Lymphoma. 2005;  46 709-715
  • 215 Wolf B C, Neiman R S. Hypothesis: splenic filtration and the pathogenesis of extramedullary hematopoiesis in agnogenic myeloid metaplasia.  Hematol Pathol. 1987;  1 77-80
  • 216 Gilbert H S, Praloran V, Stanley E R. Increased CSF-1 (M-CSF) in myeloproliferative disease: association with myeloid metaplasia and peripheral marrow extension.  Blood. 1989;  74 1231-1234
  • 217 Buhr T, Georgi A, Choritz H. Myelofibrosis in chronic myeloproliferative disorders. Incidence among subtypes to the Hannover Classification.  Pathol Res Pract. 1993;  189 121-132
  • 218 Thiele J, Kvasnicka H M, Schmitt-Graeff A, Zankovich R, Diehl V. Follow-up examinations including sequential bone marrow biopsies in essential thrombocythemia (ET): a retrospective clinicopathological study of 120 patients.  Am J Hematol. 2002;  70 283-291
  • 219 Kreft A, Buesche G, Ghalibafian M, Buhr T, Fischer T, Kirkpatrick C J. The incidence of myelofibrosis in essential thrombocythemia, polycythemia vera and chronic idiopathic myelofibrosis: a retrospective evaluation of sequential bone marrow biopsies.  Acta Haematol. 2005;  113 137-143
  • 220 Bauermeister D E. Quantification of bone marrow reticulin.  Am J Clin Pathol. 1971;  56 24-31
  • 221 Manoharan A, Smart R C, Pitney W R. Prognostic factors in myelofibrosis.  Pathology. 1982;  14 455-461
  • 222 Thiele J, Kvasnicka H M, Facchetti F, Franco V, Van Der Walt J, Orazi A. European consensus for grading of bone marrow fibrosis and assessment of cellularity in myeloproliferative disorders.  Haematologica. 2005;  90 1128-1132
  • 223 Thiele J, Kvanicka H M, Schmitt-Graeff A, Diehl V. Dynamics of fibrosis in chronic idiopathic (primary) myelofibrosis during therapy: a follow-up study on 309 patients.  Leuk Lymphoma. 2003;  44 949-953
  • 224 Buhr T, Buesche G, Choritz H, Langer F, Kreipe H. Evolution of myelofibrosis in chronic idiopathic myelofibrosis as evidenced in sequential bone marrow biopsy specimens.  Am J Clin Pathol. 2003;  119 152-158
  • 225 Kvasnicka H M, Thiele J, Werden C, Zankovich R, Diehl V, Fischer R. Prognostic factors in idiopathic (primary) osteomyelosclerosis.  Cancer. 1997;  80 708-719
  • 226 Anger B, Seidler R, Haug U, Popp C, Heimpel H. Idiopathic myelofibrosis: a retrospective study of 103 patients.  Haematologica. 1990;  75 228-234
  • 227 Reilly J T. Idiopathic myelofibrosis: pathogenesis, natural history and management.  Blood Rev. 1997;  11 233-242
  • 228 Dupriez B, Morel P, Demory J L et al.. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system.  Blood. 1996;  88 1013-1018
  • 229 Michiels J J. Clinical, pathological and molecular features of myeloproliferative disorders: MPD 2005 and beyond.  Hematology (Am Soc Hematol Educ Program). 2005;  10(suppl 1) 215-223
  • 230 Tefferi A, Gilliland D G. The JAK2 V617F tyrosine kinase mutation in myeloproliferative disorders: status report and immediate implications for disease classification and diagnosis.  Mayo Clin Proc. 2005;  80 947-958
  • 231 Michiels J J, Berneman Z, Van Bockstaele D, De Raeve H, Schroyens W. Current diagnostic criteria and the molecular etiology of the chronic myeloproliferative disorders (MPD) essential thrombocythemia (ET), polycythemia vera (PV) and agnogenic myeloid metaplasia (AMM) with secondary myelofibrosis (MF).  Pathol Biol. 2006;  , In press
  • 232 Vainchenker W, Constantinescu S N. A unique activating mutation in JAK2 (V617F) is at the origin of polycythemia vera and allows a new classification of myeloproliferative disease.  Hematology (Am Soc Hematol Educ Program). 2005;  195-200

Jan J MichielsM.D. Ph.D. 

Goodheart Institute, Rotterdam, MPD Center Europe, Erasmus Tower

Veenmos 13, 3069 AT Rotterdam, The Netherlands

Email: postbus@goodheartcenter.demon.nl