References and Notes
1a
Molina P.
Vilaplana MJ.
Synthesis
1994,
1197
1b
Wamhoff H.
Richardt G.
Stolben S.
Adv. Heterocycl. Chem.
1995,
64:
125
1c
Fresneda PM.
Molina P.
Synlett
2004,
1
2a
Molina P.
Pastor A.
Vilaplana MJ.
J. Org. Chem.
1996,
61:
8094
2b
Kobayashi T.
Nitta M.
Chem. Lett.
1981,
1459
2c
Iino Y.
Nitta M.
Bull. Chem. Soc. Jpn.
1988,
61:
2235
2d
Molina P.
Pastor A.
Vilaplana MJ.
Tetrahedron Lett.
1993,
34:
3773
2e
Molina P.
Pastor A.
Vilaplana MJ.
Foces-Foces C.
Tetrahedron
1995,
51:
1265
3a
Degl’Innocenti A.
Funicello M.
Scafato P.
Spagnolo P.
Zanirato P.
J. Chem. Soc., Perkin Trans. 1
1996,
2561
3b
Bonini C.
Chiummiento M.
Funicello M.
Spagnolo P.
Tetrahedron
2000,
56:
1517
3c
Bonini C.
D’Auria M.
Funicello M.
Romaniello G.
Tetrahedron
2002,
58:
3507
3d
Bonini C.
Funicello M.
Scialpi R.
Spagnolo P.
Tetrahedron
2003,
59:
7515
4a
Foresti E.
Spagnolo P.
Zanirato P.
J. Chem Soc., Perkin Trans. 1
1989,
1354
4b
Foresti E.
Di Gioia MT.
Nanni D.
Zanirato P.
Gazz. Chim. Ital.
1995,
125:
151
5
Molina P.
Fresneda PM.
Sanza MA.
Foces-Foces C.
De Arellano MCR.
Tetrahedron
1998,
54:
9623
6a
Bhatti IA.
Busby RE.
Binmohamed M.
Parrick J.
Shaw CJG.
J. Chem. Soc., Perkin Trans. 1
1997,
3581
6b
Kazerani S.
Novak S.
J. Org. Chem.
1998,
63:
895
7a
Barun O.
Patra PK.
Ila H.
Junjappa H.
Tetrahedron Lett.
1999,
40:
3797
7b
Stolc S.
Life Sci.
1999,
65:
1943
8a
Meyer M.
Guyot M.
Tetrahedron Lett.
1996,
37:
4931
8b
Molina P.
Fresneda PM.
Sanz MA.
Tetrahedron Lett.
1997,
38:
6909
9a
Achab S.
Guyot M.
Potier P.
Tetrahedron Lett.
1995,
36:
2615
9b
Rocca P.
Marsais S.
Godard A.
Queguiner G.
Tetrahedron
1993,
49:
49
10
Tahri A.
Buysens KJ.
Van der Eycken EV.
Vandenberghe DM.
Hoornaen GJ.
Tetrahedron
1998,
54:
13211
11a
Molina P.
Alajarin M.
Vidal A.
Sanchez-Andrada P.
J. Org. Chem.
1992,
57:
929
11b
Molina P.
Fresneda PM.
Synthesis
1989,
878
12
Erba E.
Gelmi ML.
Pocar D.
Tetrahedron
2000,
56:
9991
13
Beccalli EM.
Clerici F.
Marchesini A.
Tetrahedron
2001,
57:
4787
14
Tanaka K.
Kitamura M.
Narasaka K.
Bull. Chem. Soc. Jpn.
2005,
78:
1659
15
Preparation of the 1-Methylindol-2-yl Phosphoranes 2a,b.
2-Azido-1-methylindole (1), freshly obtained after filtration through a Florisil® pad of the crude product from azido transfer reaction of 1-methylindole (1 mmol) with tosyl azide,
[4]
was dissolved in dry Et2O (2 mL) and then slowly added to an anhyd Et2O solution (2 mL) of PPh3 (1 mmol) at 0 °C under nitrogen. The reaction mixture was stirred at 0 °C for ca. 1 h after which the separated solid material was filtered off to give the triphenylphosphorane (2a, 0.7 mmol, 70%) as a dark-yellow powder, mp 90-92 °C. 1H NMR (300 MHz, CDCl3): δ = 7.90-7.33 (m, 15 H), 7.20-7.15 (m, 1 H), 7.10-6.95 (m, 1 H), 6.90-6.80 (m, 2 H), 5.15 (s, 1 H), 3.87 (s, 3 H). 13C NMR (50 MHz, CDCl3): δ = 149.5, 144.4, 137.0, 134.5, 132.4, 132.0, 131.1, 130.0, 129.3, 127.8, 127.0, 125.5, 125.0, 124.3, 121.5, 118.7, 117.5, 117.0, 114.0, 113.7, 111.0, 109.3, 39.0.
The methyldiphenylphosphorane (2b) was similarly pre-pared in 55% yield by azidation of 1-methylindole (1 mmol) followed by direct treatment with methyldiphenylphosphine (1 mmol). The compound 2b was obtained as a viscous oil which showed a tendency to decompose under work-up conditions and was thus employed without purification.
1H NMR (300 MHz, CDCl3): δ = 7.95-7.65 (m, 5 H), 7.58-7.40 (m, 5 H), 7.21-7.18 (m, 1 H), 7.15-7.10 (m, 1 H), 6.90-6.80 (m, 2 H), 5.20 (s, 1 H), 3.87 (s, 3 H), 2.23 (d, 3 H, 2
J
PH = 12.8 Hz). 13C NMR (50 MHz, CDCl3): δ = 143.6, 141.0, 134.6, 133.0, 132.3, 131.6, 131.5, 130.7, 129.5, 129.2, 129.2, 128.2, 126.1, 125.9, 118.8, 117.0, 116.5, 107.5, 37.0, 14.88.
16
Synthesis of the Carbolines 3a-e. Typical Procedure.
A mixture of the triphenylphosphorane (2a, 1 mmol) and trans-crotonaldehyde (1 mmol) in dry toluene (5 mL) was stirred at 70 °C for ca. 20 h under a stream of nitrogen. After cooling, the solvent was removed in vacuo and the resultant residue chromatographed on a silica gel column by progressive elution with PE-EtOAc mixtures to give 4,9-dimethyl-9H-pyrido[2,3-b]indole (3b,
[18]
80%) as an oil. 1H NMR (300 MHz, CDCl3): δ = 8.40-8.36 (m, 1 H), 8.20-8.15 (m, 1 H), 7.60-7.55 (m, 1 H), 7.40-7.35 (m, 1 H), 7.23 (s, 1 H), 7.15-7.00 (m, 1 H), 4.10 (s, 3 H), 2.94 (s, 3 H). 13C NMR (50 MHz, CDCl3): δ = 153.3, 150.6, 145.8,143.0, 129.4, 125.8, 125.0, 123.1, 117.3, 116.6, 108.3, 30.0, 27.8.
The carbolines 3a
[17b]
[17c]
and 3e
14 had physical and/or spectral data consistent with those previously reported. The hitherto unknown carbolines 3c,d were identified on the basis of NMR and MS data as well as elemental analysis.
17a
Zhestkov VP.
Druzhinina VV.
Rudnitskikh AV.
Khim. Geterotsikl. Soedin.
1995,
1507 ; Chem. Abstr. 1996, 125, 33513x
17b
Clark VM.
Cox A.
Herbert EJ.
J. Chem. Soc. C
1968,
831
17c
Eiter K.
Nagy M.
Monatsh. Chem.
1949,
80:
607
17d
Eiter K.
Monatsh. Chem.
1948,
79:
17
18
Abramenko PI.
Zhurnal Vses. Khim. Obshch. im. D.I. Mendeleeva
1973,
18:
715 ; Chem. Abstr. 1974, 80, 95788b
19 Replacement of phenyl with methyl group(s) on phosphorus could enhance the reactivity of our previous benzothiophen-2-yl and, especially, benzothiophen-3-yl phosphoranes with enones, see ref. 3b,3c.