Fortschr Neurol Psychiatr 2007; 75(1): 10-17
DOI: 10.1055/s-2006-944267
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Alkoholbedingte Störungen - Ätiopathogenese und therapeutischer Ausblick

Alcohol-Related Disorders: Etiopathology and Therapeutic ConsiderationsJ.  Hein1 , J.  Wrase1 , A.  Heinz1
  • 1Klinik für Psychiatrie und Psychotherapie, Charité - Universitätsmedizin Berlin
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
17. Januar 2007 (online)

Zusammenfassung

In den letzten Jahren konnten wichtige Fortschritte bei der Erforschung der neurobiologischen Grundlagen alkoholbedingter Störungen verzeichnet werden. Sehr gut untersucht sind die Auswirkungen von Alkohol auf die Neurotransmittersysteme. Eine dopaminerge und GABAerge Bahnung trägt maßgeblich zu den Stimulationseffekten geringer Dosen Ethanols bei, höhere Dosen vermitteln über eine glutamaterge Hemmung viele der negativen Wirkungen. Zahlreiche Ergebnisse belegen, dass ein verminderter Serotoninstoffwechsel einen Risikofaktor für die Entwicklung einer Alkoholabhängigkeit darstellt. In diesem Zusammenhang wird die Erfolgsgeschichte des Absinths diskutiert, ein Ethanol- und Thujon-haltiges Getränk, wobei Thujon eine GABAerge Hemmung und eine veränderte serotonerge Ansprechbarkeit bewirkt. Auch für die Bedeutung von Cannabinoid- sowie striataler Opiat-Rezeptoren bei Ethanolabhängigkeit sprechen zahlreiche Ergebnisse. Bildgebungsuntersuchungen weisen eine wichtige Rolle des Belohnungssystems bei alkoholbedingten Störungen nach. Untersuchungsergebnisse belegen, dass genetische Faktoren prädisponierend wirken können und dass die Genexpression einer Steuerung durch biologische und Umweltfaktoren unterliegt. Störungen der Hypothalamus-Hypophysen-Nebennierenrinden-Achse sind ebenfalls bei Alkoholabhängigkeit nachweisbar. Das Verständnis der neurobiologischen Zusammenhänge alkoholbedingter Störungen wird sicher dazu beitragen, deren Therapieoptionen zu erweitern und zu verbessern.

Abstract

The scientific understanding of the neurobiological priniciples of alcoholism has made significant progress in recent years. Especially the effects of ethanol on the neurotransmitter-systems are well studied. Dopaminergic and GABAergic facilitation contribute to the stimulating effects of low doses of alcohol while many of its adverse effects are mediated by glutamatergic inhibition at higher doses. A reduced serotonine-metabolism was shown to be a risk factor for the development of an alcohol dependence. The historic success of absinthe is discussed in this context. Absinthe is a mixture of ethanol and thujone, a substance that leads to a GABAergic inhibition as well as a reduced serotonergic responsiveness. Many studies substantiate the role of cannabinoid as well as striatal opiate-receptors in alcohol-related disorders. Neuroimaging studies could prove the important role of the reward system in this connection. Genetic factors were shown to be predisposing, however biological and environmental factors have a regulatory effect on the gene expression. Disturbances of the hpa-axis (hypothalamus-pituitary gland-adrenal cortex) were also shown to play a role in alcohol dependence. The understanding of these neurobiological principles of alcohol-related disorders should contribute to enhance and improve their therapeutic options.

Literatur

  • 1 Bloomfield K, Stockwell T, Gmel G, Rehn N. International comparisons of alcohol consumption.  Alcohol Res Health. 2003;  27 95-109
  • 2 Mann K, Hermann D, Heinz A. One hundred years of alcoholism: the Twentieth Century.  Alcohol Alcohol. 2000;  35 10-15
  • 3 Istvan J, Matarazzo J D. Tobacco, Alcohol, and Caffeine Use - A Review of Their Interrelationships.  Psychological Bulletin. 1984;  95 301-326
  • 4 Grant B F. The impact of a family history of alcoholism on the relationship between age at onset of alcohol use and DSM-IV alcohol dependence - Results from the National Longitudinal Alcohol Epidemiologic Survey.  Alcohol Health & Research World. 1998;  22 144-147
  • 5 Cloninger C R. Neurogenetic adaptive mechanisms in alcoholism.  Science. 1987;  236 410-416
  • 6 Galea S, Nandi A, Vlahov D. The social epidemiology of substance use.  Epidemiologic Reviews. 2004;  26 36-52
  • 7 Oroszi G, Goldman D. Alcoholism: genes and mechanisms.  Pharmacogenomics. 2004;  5 1037-1048
  • 8 Chiara G Di, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats.  Proc Natl Acad Sci USA. 1988;  85 5274-5278
  • 9 Krystal J H, Tabakoff B. Ethanol abuse, dependence, and withdrawal: neurobiology and clinical implications. Psychopharmacology: a fifth generation of progress. Philadelphia: Lipincott, Williams and Wilkins 2002: 1425-1443
  • 10 Tsai G, Gastfriend D R, Coyle J T. The glutamatergic basis of human alcoholism.  Am J Psychiatry. 1995;  152 332-340
  • 11 Schuckit M A, Smith T L, Kalmijn J. The search for genes contributing to the low level of response to alcohol: Patterns of findings across studies.  Alcoholism-Clinical and Experimental Research. 2004;  28 1449-1458
  • 12 Schuckit M A, Smith T L. An 8-year follow-up of 450 sons of alcoholic and control subjects.  Arch Gen Psychiatry. 1996;  53 202-210
  • 13 McBride W J, Li T K. Animal models of alcoholism: neurobiology of high alcohol-drinking behavior in rodents.  Crit Rev Neurobiol. 1998;  12 339-369
  • 14 Newlin D B, Thomson J B. Alcohol challenge with sons of alcoholics: a critical review and analysis.  Psychol Bull. 1990;  108 383-402
  • 15 Pollock V E. Meta-analysis of subjective sensitivity to alcohol in sons of alcoholics.  Am J Psychiatry. 1992;  149 1534-1538
  • 16 Schuckit M A, Smith T L. An 8-year follow-up of 450 sons of alcoholic and control subjects.  Arch Gen Psychiatry. 1996;  53 202-210
  • 17 Heinz A, Higley J D, Gorey J G. et al . In vivo association between alcohol intoxication, aggression, and serotonin transporter availability in nonhuman primates.  Am J Psychiatry. 1998;  155 1023-1028
  • 18 Mihic S J, Ye Q, Wick M J. et al . Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors.  Nature. 1997;  389 385-389
  • 19 Doudet D, Hommer D, Higley J D. et al . Cerebral glucose metabolism, CSF 5-HIAA levels, and aggressive behavior in rhesus monkeys.  Am J Psychiatry. 1995;  152 1782-1787
  • 20 Clarke A S, Hedeker D R, Ebert M H, Schmidt D E, McKinney W T, Kraemer G W. Rearing experience and biogenic amine activity in infant rhesus monkeys.  Biological Psychiatry. 1996;  40 338-352
  • 21 Higley J D, Suomi S J, Linnoila M. CSF monoamine metabolite concentrations vary according to age, rearing, and sex, and are influenced by the stressor of social separation in rhesus monkeys.  Psychopharmacology (Berl). 1991;  103 551-556
  • 22 Oxenstierna G, Edman G, Iselius L, Oreland L, Ross S B, Sedvall G. Concentrations of monoamine metabolites in the cerebrospinal fluid of twins and unrelated individuals - a genetic study.  J Psychiatr Res. 1986;  20 19-29
  • 23 Higley J D, Suomi S J, Linnoila M. A nonhuman primate model of type II alcoholism? Part 2. Diminished social competence and excessive aggression correlates with low cerebrospinal fluid 5-hydroxyindoleacetic acid concentrations.  Alcohol Clin Exp Res. 1996;  20 643-650
  • 24 Higley J D, Suomi S J, Linnoila M. A nonhuman primate model of type II excessive alcohol consumption? Part 1. Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentrations and diminished social competence correlate with excessive alcohol consumption.  Alcohol Clin Exp Res. 1996;  20 629-642
  • 25 Heinz A, Higley J D, Gorey J G. et al . In vivo association between alcohol intoxication, aggression, and serotonin transporter availability in nonhuman primates.  Am J Psychiatry. 1998;  155 1023-1028
  • 26 Higley J D, Suomi S J, Linnoila M. A nonhuman primate model of type II alcoholism? Part 2. Diminished social competence and excessive aggression correlates with low cerebrospinal fluid 5-hydroxyindoleacetic acid concentrations.  Alcohol Clin Exp Res. 1996;  20 643-650
  • 27 Higley J D, Suomi S J, Linnoila M. A nonhuman primate model of type II excessive alcohol consumption? Part 1. Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentrations and diminished social competence correlate with excessive alcohol consumption.  Alcohol Clin Exp Res. 1996;  20 629-642
  • 28 Heinz A, Higley J D, Gorey J G. et al . In vivo association between alcohol intoxication, aggression, and serotonin transporter availability in nonhuman primates.  Am J Psychiatry. 1998;  155 1023-1028
  • 29 Heinz A, Jones D W, Gorey J G. et al . Serotonin transporter availability correlates with alcohol intake in non-human primates.  Mol Psychiatry. 2003;  8 231-234
  • 30 Heinz A, Jones D W, Mazzanti C. et al . A relationship between serotonin transporter genotype and in vivo protein expression and alcohol neurotoxicity.  Biol Psychiatry. 2000;  47 643-649
  • 31 Lesch K P, Bengel D, Heils A. et al . Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region.  Science. 1996;  274 1527-1531
  • 32 Barr C S, Newman T K, Becker M L. et al . Serotonin transporter gene variation is associated with alcohol sensitivity in rhesus macaques exposed to early-life stress.  Alcohol Clin Exp Res. 2003;  27 812-817
  • 33 Schuckit M A, Mazzanti C, Smith T L. et al . Selective genotyping for the role of 5-HT2A, 5-HT2C, and GABA alpha 6 receptors and the serotonin transporter in the level of response to alcohol: a pilot study.  Biol Psychiatry. 1999;  45 647-651
  • 34 Heinz A, Jones D W, Gorey J G. et al . Serotonin transporter availability correlates with alcohol intake in non-human primates.  Mol Psychiatry. 2003;  8 231-234
  • 35 Higley J D, Suomi S J, Linnoila M. A nonhuman primate model of type II alcoholism? Part 2. Diminished social competence and excessive aggression correlates with low cerebrospinal fluid 5-hydroxyindoleacetic acid concentrations.  Alcohol Clin Exp Res. 1996;  20 643-650
  • 36 Higley J D, Suomi S J, Linnoila M. A nonhuman primate model of type II excessive alcohol consumption? Part 1. Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentrations and diminished social competence correlate with excessive alcohol consumption.  Alcohol Clin Exp Res. 1996;  20 629-642
  • 37 Schuckit M A, Mazzanti C, Smith T L. et al . Selective genotyping for the role of 5-HT2A, 5-HT2C, and GABA alpha 6 receptors and the serotonin transporter in the level of response to alcohol: a pilot study.  Biol Psychiatry. 1999;  45 647-651
  • 38 Conrad B. Absinthe - history in a bottle. San Francisco: Chronicle Books 1998
  • 39 Höld K M, Sirisoma N S, Ikeda T, Narahashi T, Casida J E. alpha-thujone (the active component of absinthe): gamma-aminobutyric acid type A receptor modulation and metabolic detoxification.  Proceedings of the National Academy of Sciences of the United States of America. 2000;  97 3826-3831
  • 40 Deiml T, Haseneder R, Zieglgansberger W. et al . alpha-thujone reduces 5-HT3 receptor activity by an effect on the agonist-induced desensitization.  Neuropharmacology. 2004;  46 192-201
  • 41 Hein J, Juckel G, Kienast T, Heinz A. „Die grüne Fee” Absinth - historische und biochemische Fakten.  Sucht - Zeitschrift für Wissenschaft und Praxis. 2005;  51 19-26
  • 42 Castillo J del, Anderson M, Rubottom G M. Marijuana, absinthe and the central nervous system.  Nature. 1975;  253 365-366
  • 43 Meschler J P, Howlett A C. Thujone exhibits low affinity for cannabinoid receptors but fails to evoke cannabimimetic responses.  Pharmacol Biochem Behav. 1999;  62 473-480
  • 44 Kalivas P W, McFarland K. Brain circuitry and the reinstatement of cocaine-seeking behavior.  Psychopharmacology. 2003;  168 44-56
  • 45 Tanda G, Pontieri F E, Dichiara G. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu 1 opioid receptor mechanism.  Science. 1997;  276 2048-2050
  • 46 Giuffrida A, Parsons L H, Kerr T M, Fonseca F R de, Navarro M, Piomelli D. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum.  Nat Neurosci. 1999;  2 358-363
  • 47 Vries T J de, Schoffelmeer A NM. Cannabinoid CB1 receptors control conditioned drug seeking.  Trends Pharmacol Sci. 2005;  26 420-426
  • 48 Racz I, Bilkei-Gorzo A, Toth Z E, Michel K, Palkovits M, Zimmer A. A critical role for the cannabinoid CB1 receptors in alcohol dependence and stress-stimulated ethanol drinking.  J Neurosci. 2003;  23 2453-2458
  • 49 Cippitelli A, Bilbao A, Hansson A C. et al . Cannabinoid CB1 receptor antagonism reduces conditioned reinstatement of ethanol-seeking behavior in rats.  Eur J Neurosci. 2005;  21 2243-2251
  • 50 Wang L, Liu J, Harvey-White J, Zimmer A, Kunos G. Endocannabinoid signaling via cannabinoid receptor 1 is involved in ethanol preference and its age-dependent decline in mice.  Proc Natl Acad Sci USA. 2003;  100 1393-1398
  • 51 Koob G F, Le Moal M. Drug abuse: hedonic homeostatic dysregulation.  Science. 1997;  278 52-58
  • 52 Abi-Dargham A, Krystal J H, Anjilvel S. et al . Alterations of benzodiazepine receptors in type II alcoholic subjects measured with SPECT and [I-123]iomazenil.  American Journal of Psychiatry. 1998;  155 1550-1555
  • 53 Tsai G, Gastfriend D R, Coyle J T. The glutamatergic basis of human alcoholism.  Am J Psychiatry. 1995;  152 332-340
  • 54 Krupitsky E M, Burakov A M, Romanova T N. et al . Attenuation of ketamine effects by nimodipine pretreatment in recovering ethanol dependent men: psychopharmacologic implications of the interaction of NMDA and L-type calcium channel antagonists.  Neuropsychopharmacology. 2001;  25 936-947
  • 55 Krystal J H, Petrakis I L, Webb E. et al . Dose-related ethanol-like effects of the NMDA antagonist, ketamine, in recently detoxified alcoholics.  Arch Gen Psychiatry. 1998;  55 354-360
  • 56 Krystal J H, Petrakis I L, Mason G, Trevisan L, D'Souza D C. N-methyl-D-aspartate glutamate receptors and alcoholism: reward, dependence, treatment, and vulnerability.  Pharmacol Ther. 2003;  99 79-94
  • 57 Miyakawa T, Yagi T, Kitazawa H. et al . Fyn-kinase as a determinant of ethanol sensitivity: relation to NMDA-receptor function.  Science. 1997;  278 698-701
  • 58 Tsai G, Gastfriend D R, Coyle J T. The glutamatergic basis of human alcoholism.  Am J Psychiatry. 1995;  152 332-340
  • 59 Miyakawa T, Yagi T, Kitazawa H. et al . Fyn-kinase as a determinant of ethanol sensitivity: relation to NMDA-receptor function.  Science. 1997;  278 698-701
  • 60 Spanagel R, Pendyala G, Abarca C. et al . The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption.  Nat Med. 2005;  11 35-42
  • 61 Petrakis I L, Limoncelli D, Gueorguieva R. et al . Altered NMDA glutamate receptor antagonist response in individuals with a family vulnerability to alcoholism.  American Journal of Psychiatry. 2004;  161 1776-1782
  • 62 Krystal J H, Petrakis I L, Limoncelli D. et al . Altered NMDA glutamate receptor antagonist response in recovering ethanol-dependent patients.  Neuropsychopharmacology. 2003;  28 2020-2028
  • 63 Krystal J H, Petrakis I L, Limoncelli D. et al . Altered NMDA glutamate receptor antagonist response in recovering ethanol-dependent patients.  Neuropsychopharmacology. 2003;  28 2020-2028
  • 64 Petrakis I L, Limoncelli D, Gueorguieva R. et al . Altered NMDA glutamate receptor antagonist response in individuals with a family vulnerability to alcoholism.  American Journal of Psychiatry. 2004;  161 1776-1782
  • 65 Engberg G, Hajos M. Alcohol withdrawal reaction as a result of adaptive changes of excitatory amino acid receptors.  Naunyn Schmiedebergs Arch Pharmacol. 1992;  346 437-441
  • 66 Siegel S, Hinson R E, Krank M D, McCully J. Heroin “overdose” death: contribution of drug-associated environmental cues.  Science. 1982;  216 436-437
  • 67 Heinz A, Lober S, Georgi A. et al . Reward craving and withdrawal relief craving: assessment of different motivational pathways to alcohol intake.  Alcohol Alcohol. 2003;  38 35-39
  • 68 Spanagel R, Zieglgänsberger W. Anti-craving compounds for ethanol: new pharmacological tools to study addictive processes.  Trends Pharmacol Sci. 1997;  18 54-59
  • 69 Mann K, Lehert P, Morgan M Y. The efficacy of acamprosate in the maintenance of abstinence in alcohol-dependent individuals: results of a meta-analysis.  Alcohol Clin Exp Res. 2004;  28 51-63
  • 70 Niaura R S, Rohsenow D J, Binkoff J A, Monti P M, Pedraza M, Abrams D B. Relevance of cue reactivity to understanding alcohol and smoking relapse.  J Abnorm Psychol. 1988;  97 133-152
  • 71 Koob G F, Le Moal M. Drug abuse: hedonic homeostatic dysregulation.  Science. 1997;  278 52-58
  • 72 Wise R A. The neurobiology of craving: implications for the understanding and treatment of addiction.  J Abnorm Psychol. 1988;  97 118-132
  • 73 Chiara G di. The role of dopamine in drug abuse viewed from the perspective of its role in motivation.  Drug Alcohol Depend. 1995;  38 95-137
  • 74 Berridge K C, Robinson T E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?.  Brain Research Reviews. 1998;  28 309-369
  • 75 Schultz W, Dayan P, Montague P R. A neural substrate of prediction and reward.  Science. 1997;  275 1593-1599
  • 76 Berridge K C, Robinson T E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?.  Brain Research Reviews. 1998;  28 309-369
  • 77 Heinz A, Siessmeier T, Wrase J. et al . Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving.  Am J Psychiatry. 2004;  161 1783-1789
  • 78 George M S, Anton R F, Bloomer C. et al . Activation of prefrontal cortex and anterior thalamus in alcoholic subjects on exposure to alcohol-specific cues.  Arch Gen Psychiatry. 2001;  58 345-352
  • 79 O'Brien C P, Childress A R, Ehrman R, Robbins S J. Conditioning factors in drug abuse: can they explain compulsion?.  J Psychopharmacol. 1998;  12 15-22
  • 80 Wiesbeck G A, Weijers H G, Lesch O M, Glaser T, Toennes P J, Boening J. Flupenthixol decanoate and relapse prevention in alcoholics: results from a placebo-controlled study.  Alcohol Alcohol. 2001;  36 329-334
  • 81 Spanagel R, Herz A, Shippenberg T S. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway.  Proc Natl Acad Sci USA. 1992;  89 2046-2050
  • 82 O'Malley S S, Jaffe A J, Chang G. et al . Six-month follow-up of naltrexone and psychotherapy for alcohol dependence.  Arch Gen Psychiatry. 1996;  53 217-224
  • 83 Heinz A, Reimold M, Wrase J. et al . Correlation of stable elevations in striatal {micro}-opioid receptor availability in detoxified alcoholic patients with alcohol craving: a positron emission tomography study using carbon 11-labeled carfentanil.  Arch Gen Psychiatry. 2005;  62 57-64
  • 84 Volpicelli J R, Watson N T, King A C, Sherman C E, O'Brien C P. Effect of naltrexone on alcohol “high” in alcoholics.  Am J Psychiatry. 1995;  152 613-615
  • 85 Krystal J H, Cramer J A, Krol W F, Kirk G F, Rosenheck R A. Naltrexone in the treatment of alcohol dependence.  N Engl J Med. 2001;  345 1734-1739
  • 86 Heinz A, Lober S, Georgi A. et al . Reward craving and withdrawal relief craving: assessment of different motivational pathways to alcohol intake.  Alcohol Alcohol. 2003;  38 35-39
  • 87 Mann K, Agartz I, Harper C. et al . Neuroimaging in alcoholism: ethanol and brain damage.  Alcohol Clin Exp Res. 2001;  25 104S-109S
  • 88 Kiefer F, Wiedemann K. Neuroendocrine pathways of addictive behaviour.  Addict Biol. 2004;  9 205-212
  • 89 Jenkins J S, Connolly J. Adrenocortical Response to Ethanol in Man.  British Medical Journal. 1968;  2 804-805
  • 90 Bell S M, Reynolds J G, Thiele T E, Gan J, Figlewicz D P, Woods S C. Effects of third intracerebroventricular injections of corticotropin-releasing factor (CRF) on ethanol drinking and food intake.  Psychopharmacology. 1998;  139 128-135
  • 91 Olive M F, Mehmert K K, Koenig H N. et al . A role for corticotropin releasing factor (CRF) in ethanol consumption, sensitivity, and reward as revealed by CRF-deficient mice.  Psychopharmacology. 2003;  165 181-187
  • 92 Sillaber I, Rammes G, Zimmermann S. et al . Enhanced and delayed stress-induced alcohol drinking in mice lacking functional CRH1 receptors.  Science. 2002;  296 931-933
  • 93 Ehlers C L, Chaplin R I, Wall T L. et al . Corticotropin Releasing-Factor (Crf) - Studies in Alcohol Preferring and Nonpreferring Rats.  Psychopharmacology. 1992;  106 359-364
  • 94 Fahlke C, Eriksson C JP. Effect of adrenalectomy and exposure to corticosterone on alcohol intake in alcohol-preferring and alcohol-avoiding rat lines.  Alcohol and Alcoholism. 2000;  35 139-144
  • 95 Fahlke C, Engel J A, Eriksson C JP, Hard E, Soderpalm B. Involvement of Corticosterone in the Modulation of Ethanol-Consumption in the Rat.  Alcohol. 1994;  11 195-202
  • 96 Fahlke C, Hard E, Thomasson R, Engel J A, Hansen S. Metyrapone-Induced Suppression of Corticosterone Synthesis Reduces Ethanol-Consumption in High-Preferring Rats.  Pharmacology Biochemistry and Behavior. 1994;  48 977-981
  • 97 Morin L P, Forger N G. Endocrine Control of Ethanol Intake by Rats Or Hamsters - Relative Contributions of the Ovaries, Adrenals and Steroids.  Pharmacology Biochemistry and Behavior. 1982;  17 529-537
  • 98 Krishnan S, Nash J F, Maickel R P. Free-Choice Ethanol-Consumption by Rats - Effects of Acth4 - 10.  Alcohol. 1991;  8 401-404
  • 99 Heiman M L, Ahima R S, Craft L S, Schoner B, Stephens T W, Flier J S. Leptin inhibition of the hypothalamic-pituitary-adrenal axis in response to stress.  Endocrinology. 1997;  138 3859-3863
  • 100 Kiefer F, Jahn H, Wolf K, Kampf P, Knaudt K, Wiedemann K. Free-choice alcohol consumption in mice after application of the appetite regulating peptide leptin.  Alcoholism-Clinical and Experimental Research. 2001;  25 787-789
  • 101 O'Malley S S, Krishnan-Sarin S, Farren C, Sinha R, Kreek M J. Naltrexone decreases craving and alcohol self-administration in alcohol-dependent subjects and activates the hypothalamo-pituitary-adrenocortical axis.  Psychopharmacology (Berl). 2002;  160 19-29
  • 102 Nicolas J M, Fernandez-Sola J, Fatjo F. et al . Increased circulating leptin levels in chronic alcoholism.  Alcoholism-Clinical and Experimental Research. 2001;  25 83-88
  • 103 Kiefer F, Jahn H, Kellner M, Naber D, Wiedemann K. Leptin as a possible modulator of craving for alcohol.  Arch Gen Psychiatry. 2001;  58 509-510
  • 104 Heinz A, Rommelspacher H, Graf K J, Kurten I, Otto M, Baumgartner A. Hypothalamic-Pituitary-Gonadal Axis, Prolactin, and Cortisol in Alcoholics During Withdrawal and After 3 Weeks of Abstinence - Comparison with Healthy Control Subjects.  Psychiatry Research. 1995;  56 81-95
  • 105 Loosen P T, Chambliss B, Pavlou S S, Orth D N. Adrenal-Function in Abstinent Alcoholic Men.  Progress in Neuro-Psychopharmacology & Biological Psychiatry. 1991;  15 771-780
  • 106 Pich E M, Lorang M, Yeganeh M. et al . Increase of Extracellular Corticotropin-Releasing Factor-Like Immunoreactivity Levels in the Amygdala of Awake Rats During Restraint Stress and Ethanol Withdrawal As Measured by Microdialysis.  Journal of Neuroscience. 1995;  15 5439-5447
  • 107 Junghanns K, Backhaus J, Tietz U. et al . Impaired serum cortisol stress response is a predictor of early relapse.  Alcohol Alcohol. 2003;  38 189-193
  • 108 Kiefer F, Jahn H, Schick M, Wiedemann K. Alcohol self-administration, craving and HPA-axis activity: an intriguing relationship.  Psychopharmacology. 2002;  164 239-240
  • 109 Wienberg G. Die vergessene Mehrheit. Zur Realität der Versorgung alkohol- und medikamentenabhängiger Patienten. Berlin: Psychiatrie Verlag 1992
  • 110 O'Malley S S, Jaffe A J, Chang G. et al . Six-month follow-up of naltrexone and psychotherapy for alcohol dependence.  Arch Gen Psychiatry. 1996;  53 217-224
  • 111 Sass H, Soyka M, Mann K, Zieglgänsberger W. Relapse prevention by acamprosate. Results from a placebo-controlled study on alcohol dependence.  Arch Gen Psychiatry. 1996;  53 673-680
  • 112 O'Malley S S, Krishnan-Sarin S, Farren C, Sinha R, Kreek M J. Naltrexone decreases craving and alcohol self-administration in alcohol-dependent subjects and activates the hypothalamo-pituitary-adrenocortical axis.  Psychopharmacology (Berl). 2002;  160 19-29
  • 113 Bien T H, Miller W R, Tonigan J S. Brief Interventions for Alcohol-Problems - A Review.  Addiction. 1993;  88 315-336
  • 114 Miller W R, Rollnick S. Motivational Interviewing: preparing people to change addictive behaviour. New York: Guilford Press 1991
  • 115 Bien T H, Miller W R, Tonigan J S. Brief Interventions for Alcohol-Problems - A Review.  Addiction. 1993;  88 315-336
  • 116 Bottlender M, Soyka M. Outpatient alcoholism treatment: Predictors of outcome after 3 years. Drug Alcohol Depend 2005
  • 117 Blondell R D. Ambulatory detoxification of patients with alcohol dependence.  Am Fam Physician. 2005;  71 495-502
  • 118 Bottlender M, Soyka M. Outpatient alcoholism treatment: Predictors of outcome after 3 years. Drug Alcohol Depend 2005
  • 119 Scherle T, Croissant B, Heinz A, Mann K. Ambulante Alkoholentgiftung.  Nervenarzt. 2003;  74 219-225
  • 120 Project MATCH Research Group . Matching alcoholism treatments to client heterogeneity: treatment main effects and matching effects on drinking during treatment.  J Stud Alcohol. 1998;  59 631-639
  • 121 Project MATCH Research Group . Matching alcoholism treatments to client heterogeneity: Project MATCH three-year drinking outcomes.  Alcohol Clin Exp Res. 1998;  22 1300-1311
  • 122 Kiefer F, Jahn H, Tarnaske T. et al . Comparing and combining naltrexone and acamprosate in relapse prevention of alcoholism.  Arch Gen Psychiatry. 2003;  60 92-99
  • 123 Koob G F, Le Moal M. Drug abuse: hedonic homeostatic dysregulation.  Science. 1997;  278 52-58
  • 124 Nestler E J. Molecular neurobiology of drug addiction.  Neuropsychopharmacology. 1994;  11 77-87
  • 125 Heinz A, Jones D W, Mazzanti C. et al . A relationship between serotonin transporter genotype and in vivo protein expression and alcohol neurotoxicity.  Biol Psychiatry. 2000;  47 643-649

Prof. Dr. Andreas Heinz

Klinik für Psychiatrie und Psychotherapie · Charité Universitätsmedizin Berlin Charité Campus Mitte

Schumannstr. 20 - 21

10117 Berlin

eMail: andreas.heinz@charite.de