RSS-Feed abonnieren
DOI: 10.1055/s-2006-946680
© Georg Thieme Verlag KG Stuttgart · New York
Carnosic Acid and Carnosol, Phenolic Diterpene Compounds of the Labiate Herbs Rosemary and Sage, are Activators of the Human Peroxisome Proliferator-Activated Receptor Gamma
Publikationsverlauf
Received: May 13, 2005
Accepted: May 16, 2006
Publikationsdatum:
20. Juli 2006 (online)
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand activated transcription factor, belonging to the metazoan family of nuclear hormone receptors. Activation of PPARγ increases the transcription of enzymes involved in primary metabolism, leading to lower blood levels of fatty acids and glucose. Hence, PPARγ represents the major target for the glitazone type of drugs currently being used clinically for the treatment of type 2 diabetes. Furthermore, activators of PPARγ show beneficial anti-inflammatory and anti-tumour effects. Utilizing a fusion receptor of the yeast Gal4-DNA binding domain joined to the hinge region and ligand binding domain of the human PPARγ in combination with a Gal4-driven luciferase reporter gene, cotransfected into Cos7 cells, we tested sage and rosemary extracts prepared with 80 % aqueous ethanol for possible PPARγ activation. This revealed that both extracts are capable of selectively activating Gal4-PPARγ fusion receptor, in a concentration-dependent manner, with EC50 values of 22.8 ± 8.4 mg/L and 33.7 ± 7.3 mg/L for rosemary and sage, respectively. Subsequent analysis of the characteristic constituents revealed the phenolic diterpene compounds carnosol, present in both herbs, and carnosic acid to be active principles of these extracts, showing EC50 values of 41.2 ± 5.9 μM and 19.6 ± 2.0 μM, respectively. Thus it can be concluded that the glucose lowering effect reported recently for rosemary may be attributed to PPARγ activation. Moreover, our observations may also explain the anti-inflammatory and antiproliferative effects of both compounds published previously.
Key words
PPARγ - carnosic acid - carnosol - Salvia officinalis L. - sage - Rosmarinus officinalis L. - rosemary - Lamiaceae
References
- 1 Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990; 347 645-50
- 2 Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev. 1999; 20 649-88
- 3 Castrillo A, Tontonoz P. Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. Annu Rev Cell Dev Biol. 2004; 20 455-80
- 4 Delerive P, De Bosscher K, Besnard S, Vanden Berghe W, Peters J M, Gonzalez F J. et al . Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem. 1999; 274 32 048-54
- 5 Eberhardt W, Akool el S, Rebhan J, Frank S, Beck K F, Franzen R. et al . Inhibition of cytokine-induced matrix metalloproteinase 9 expression by peroxisome proliferator-activated receptor alpha agonists is indirect and due to a NO-mediated reduction of mRNA stability. J Biol Chem. 2002; 277 33 518-28
- 6 Jiang C, Ting A T, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998; 391 82-6
- 7 Ricote M, Huang J T, Welch J S, Glass C K. The peroxisome proliferator-activated receptor (PPARgamma) as a regulator of monocyte/macrophage function. J Leukoc Biol. 1999; 66 733-9
- 8 Ricote M, Li A C, Willson T M, Kelly C J, Glass C K. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature. 1998; 391 79-82
- 9 Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell. 1992; 68 879-87
- 10 Huang J T, Welch J S, Ricote M, Binder C J, Willson T M, Kelly C. et al . Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature. 1999; 400 378-82
- 11 Bongartz T, Coras B, Vogt T, Scholmerich J, Muller-Ladner U. Treatment of active psoriatic arthritis with the PPARgamma ligand pioglitazone: an open-label pilot study. Rheumatology (Oxford). 2005; 44 126-9
- 12 Ellis C N, Varani J, Fisher G J, Zeigler M E, Pershadsingh H A, Benson S C. et al . Troglitazone improves psoriasis and normalizes models of proliferative skin disease: ligands for peroxisome proliferator-activated receptor-gamma inhibit keratinocyte proliferation. Arch Dermatol. 2000; 136 609-16
- 13 Grommes C, Landreth G E, Heneka M T. Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet Oncol. 2004; 5 419-29
- 14 Hauner H. The mode of action of thiazolidinediones. Diabetes Metab Res Rev. 2002; 18 (Suppl 2) S10-5
- 15 Inzucchi S E. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA. 2002; 287 360-72
- 16 Vogt T, Hafner C, Bross K, Bataille F, Jauch K W, Berand A. et al . Antiangiogenetic therapy with pioglitazone, rofecoxib, and metronomic trofosfamide in patients with advanced malignant vascular tumors. Cancer. 2003; 98 2251-6
- 17 Weindl G, Schafer-Korting M, Schaller M, Korting H C. Peroxisome proliferator-activated receptors and their ligands: entry into the post-glucocorticoid era of skin treatment?. Drugs. 2005; 65 1919-34
- 18 Alarcon-Aguilar F J, Roman-Ramos R, Flores-Saenz J L, Aguirre-Garcia F. Investigation on the hypoglycaemic effects of extracts of four Mexican medicinal plants in normal and alloxan-diabetic mice. Phytother Res. 2002; 16 383-6
- 19 Erenmemisoglu A, Saraymen R, Ustun S. Effect of a Rosmarinus officinalis leave extract on plasma glucose levels in normoglycaemic and diabetic mice. Pharmazie. 1997; 52 645-6
- 20 Hiller K, Melzig M. Lexikon der Arzneipflanzen und Drogen. Heidelberg; Spektrum Verlag 2003
- 21 Chan M M, Ho C T, Huang H I. Effects of three dietary phytochemicals from tea, rosemary and turmeric on inflammation-induced nitrite production. Cancer Lett. 1995; 96 23-9
- 22 Danilenko M, Studzinski G P. Enhancement by other compounds of the anti-cancer activity of vitamin D(3) and its analogs. Exp Cell Res. 2004; 298 339-58
- 23 Danilenko M, Wang Q, Wang X, Levy J, Sharoni Y, Studzinski G P. Carnosic acid potentiates the antioxidant and prodifferentiation effects of 1alpha,25-dihydroxyvitamin D3 in leukemia cells but does not promote elevation of basal levels of intracellular calcium. Cancer Res. 2003; 63 1325-32
- 24 Danilenko M, Wang X, Studzinski G P. Carnosic acid and promotion of monocytic differentiation of HL60-G cells initiated by other agents. J Natl Cancer Inst. 2001; 93 1224-33
- 25 Dorrie J, Sapala K, Zunino S J. Carnosol-induced apoptosis and downregulation of Bcl-2 in B-lineage leukemia cells. Cancer Lett. 2001; 170 33-9
- 26 Fiander H, Schneider H. Dietary ortho-phenols that induce glutathione S-transferase and increase the resistance of cells to hydrogen peroxide are potential cancer chemopreventives that act by two mechanisms: the alleviation of oxidative stress and the detoxification of mutagenic xenobiotics. Cancer Lett. 2000; 156 117-24
- 27 Huang M T, Ho C T, Wang Z Y, Ferraro T, Lou Y R, Stauber K. et al . Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. Cancer Res. 1994; 54 701-8
- 28 Huang S C, Ho C T, Lin-Shiau S Y, Lin J K. Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappa B and c-Jun. Biochem Pharmacol. 2005; 69 221-32
- 29 Laughton M J, Evans P J, Moroney M A, Hoult J R, Halliwell B. Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives. Relationship to antioxidant activity and to iron ion-reducing ability. Biochem Pharmacol. 1991; 42 1673-81
- 30 Lo A H, Liang Y C, Lin-Shiau S Y, Ho C T, Lin J K. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-kappaB in mouse macrophages. Carcinogenesis. 2002; 23 983-91
- 31 Martin D, Rojo A I, Salinas M, Diaz R, Gallardo G, Alam J. et al . Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem. 2004; 279 8919-29
- 32 Offord E A, Mace K, Ruffieux C, Malnoe A, Pfeifer A M. Rosemary components inhibit benzo[a]pyrene-induced genotoxicity in human bronchial cells. Carcinogenesis. 1995; 16 2057-62
- 33 Singletary K, MacDonald C, Wallig M. Inhibition by rosemary and carnosol of 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Lett. 1996; 104 43-8
- 34 Subbaramaiah K, Cole P A, Dannenberg A J. Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent and -independent mechanisms. Cancer Res. 2002; 62 2522-30
- 35 Moran A E, Carothers A M, Weyant M J, Redston M, Bertagnolli M M. Carnosol inhibits beta-catenin tyrosine phosphorylation and prevents adenoma formation in the C57BL/6J/Min/+ (Min/+) mouse. Cancer Res. 2005; 65 1097-104
- 36 Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodriguez De Fonseca F. et al . Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature. 2003; 425 90-3
- 37 Takamura M, Sakurai M, Yamada E, Fujita S, Yachi M, Takagi T. et al . Synthesis and biological activity of novel alpha-substituted beta-phenylpropionic acids having pyridin-2-ylphenyl moiety as antihyperglycemic agents. Bioorg Med Chem. 2004; 12 2419-39
- 38 Baricevic D, Sosa S, Della Loggia R, Tubaro A, Simonovska B, Krasna A. et al . Topical anti-inflammatory activity of Salvia officinalis L. leaves: the relevance of ursolic acid. J Ethnopharmacol. 2001; 75 125-32
- 39 del Bano M J, Lorente J, Castillo J, Benavente-Garcia O, del Rio J A, Ortuno A. et al . Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. J Agric Food Chem. 2003; 51 4247-53
- 40 Lu Y, Foo L Y. Polyphenolics of Salvia - a review. Phytochemistry. 2002; 59 117-40
- 41 Shishodia S, Majumdar S, Banerjee S, Aggarwal B B. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res. 2003; 63 4375-83
- 42 Lee H K, Nam G W, Kim S H, Lee S H. Phytocomponents of triterpenoids, oleanolic acid and ursolic acid, regulated differently the processing of epidermal keratinocytes via PPAR-alpha pathway. Exp Dermatol. 2006; 15 66-73
- 43 Liang Y C, Tsai S H, Tsai D C, Lin-Shiau S Y, Lin J K. Suppression of inducible cyclooxygenase and nitric oxide synthase through activation of peroxisome proliferator-activated receptor-gamma by flavonoids in mouse macrophages. FEBS Lett. 2001; 496 12-8
- 44 Huang T H, Peng G, Kota B P, Li G Q, Yamahara J, Roufogalis B D. et al . Pomegranate flower improves cardiac lipid metabolism in a diabetic rat model: role of lowering circulating lipids. Br J Pharmacol. 2005; 145 767-74
- 45 Chen Y, Liu J, Yang X, Zhao X, Xu H. Oleanolic acid nanosuspensions: preparation, in vitro characterization and enhanced hepatoprotective effect. J Pharm Pharmacol. 2005; 57 259-64
- 46 Schwarz K, Ternes W. Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis. I. Determination of phenolic diterpenes with antioxidative activity amongst tocochromanols using HPLC. Z Lebensm Unters Forsch. 1992; 195 95-8
- 47 Schwarz K, Ternes W. Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis. II. Isolation of carnosic acid and formation of other phenolic diterpenes. Z Lebensm Unters Forsch. 1992; 195 99-103
- 48 Schwarz K, Ternes W, Schmauderer E. Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis. III. Stability of phenolic diterpenes of rosemary extracts under thermal stress as required for technological processes. Z Lebensm Unters Forsch. 1992; 195 104-7
- 49 Wellwood C R, Cole R A. Relevance of carnosic acid concentrations to the selection of rosemary, Rosmarinus officinalis (L.), accessions for optimization of antioxidant yield. J Agric Food Chem. 2004; 52 6101-7
- 50 Crosby M B, Svenson J, Gilkeson G S, Nowling T K. A novel PPAR response element in the murine iNOS promoter. Mol Immunol. 2005; 42 1303-10
- 51 Chinetti G, Griglio S, Antonucci M, Torra I P, Delerive P, Majd Z. et al . Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem. 1998; 273 25 573-80
- 52 Park E Y, Cho I J, Kim S G. Transactivation of the PPAR-responsive enhancer module in chemopreventive glutathione S-transferase gene by the peroxisome proliferator-activated receptor-gamma and retinoid X receptor heterodimer. Cancer Res. 2004; 64 3701-13
- 53 Pighetti G M, Novosad W, Nicholson C, Hitt D C, Hansens C, Hollingsworth A B. et al . Therapeutic treatment of DMBA-induced mammary tumors with PPAR ligands. Anticancer Res. 2001; 21 825-9
- 54 Subbaramaiah K, Lin D T, Hart J C, Dannenberg A J. Peroxisome proliferator-activated receptor gamma ligands suppress the transcriptional activation of cyclooxygenase-2. Evidence for involvement of activator protein-1 and CREB-binding protein/p300. J Biol Chem. 2001; 276 12 440-8
- 55 Tontonoz P, Nagy L, Alvarez J G, Thomazy V A, Evans R M. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell. 1998; 93 241-52
- 56 Worley J R, Baugh M D, Hughes D A, Edwards D R, Hogan A, Sampson M J. et al . Metalloproteinase expression in PMA-stimulated THP-1 cells. Effects of peroxisome proliferator-activated receptor-gamma (PPAR gamma) agonists and 9-cis-retinoic acid. J Biol Chem. 2003; 278 51 340-6
Prof. Dr. Manfred Schubert-Zsilavecz
Johann Wolfgang Goethe University Frankfurt
Institute of Pharmaceutical Chemistry/ZAFES
Max-von-Laue-Str. 9
60438 Frankfurt/Main
Germany
Telefon: +49-69-7982-9339
Fax: +49-69-7982-9332
eMail: schubert-zsilavecz@pharmchem.uni-frankfurt.de