Abstract
A new uncatalyzed method for the preparation of cyanohydrin O-alkyl ethers was developed using the high-pressure-promoted reaction of acetals
with trimethylsilyl cyanide in nitromethane.
Key words
cyanation - acetals - trimethylsilyl cyanide - nitromethane - high pressure reaction
References and Notes
High Pressure Organic Chemistry. Part 32. For Part 30, see:
<A NAME="RU05306ST-1A">1a</A>
Saleha A.
Kumamoto K.
Uegaki K.
Ichikawa Y.
Kotsuki H.
Tetrahedron Lett.
2006,
47:
587
<A NAME="RU05306ST-1B">1b</A> Part 31:
Kumamoto K.
Iida H.
Hamana H.
Kotsuki H.
Matsumoto K.
Heterocycles
2005,
66:
675
Reviews:
<A NAME="RU05306ST-2A">2a</A>
Furin GG.
Vyazankina OA.
Gostevsky BA.
Vyazankin NS.
Tetrahedron
1988,
44:
2675
<A NAME="RU05306ST-2B">2b</A>
North M.
Synlett
1993,
807
<A NAME="RU05306ST-2C">2c</A>
Effenberger F.
Angew. Chem., Int. Ed. Engl.
1994,
33:
1555
<A NAME="RU05306ST-2D">2d</A>
Gregory RJH.
Chem. Rev.
1999,
99:
3649
<A NAME="RU05306ST-2E">2e</A>
North M.
Tetrahedron: Asymmetry
2003,
14:
147
<A NAME="RU05306ST-2F">2f</A>
Brunel J.-M.
Holmes IP.
Angew. Chem. Int. Ed.
2004,
43:
2752
For recent examples of Lewis acid catalyzed transformation of acetals into the corresponding
cyanohydrin O-alkyl ethers, see:
<A NAME="RU05306ST-3A">3a</A>
Sandberg M.
Sydnes LK.
Org. Lett.
2000,
2:
687
<A NAME="RU05306ST-3B">3b</A>
Tanaka N.
Miura T.
Masaki Y.
Chem. Pharm. Bull.
2000,
48:
1010
<A NAME="RU05306ST-3C">3c</A>
Kimura M.
Kuboki A.
Sugai T.
Tetrahedron: Asymmetry
2002,
13:
1059
<A NAME="RU05306ST-3D">3d</A>
Iwanami K.
Oriyama T.
Chem. Lett.
2004,
33:
1324
<A NAME="RU05306ST-4A">4a</A>
Manju K.
Trehan S.
J. Chem. Soc., Perkin Trans. 1
1995,
2383
<A NAME="RU05306ST-4B">4b</A>
Watahiki T.
Ohba S.
Oriyama T.
Org. Lett.
2003,
5:
2679
<A NAME="RU05306ST-4C">4c</A>
Iwanami K.
Hinakubo Y.
Oriyama T.
Tetrahedron Lett.
2005,
46:
5881
<A NAME="RU05306ST-5">5</A>
Kotsuki H.
Kumamoto K.
Yuki Gosei Kagaku Kyokai-shi
2005,
63:
770
<A NAME="RU05306ST-6">6</A>
Organic Synthesis at High Pressure
Matsumoto K.
Acheson RM.
John Wiley and Sons;
New York:
1991.
We also examined the same reaction in the presence of inorganic lithium salts (1.5
equiv) in MeCN, but no significant improvement was observed: LiBF4, 65%; LiOTf, 32%. There are some precedents regarding the effect of lithium salts
in cyanohydrin formation:
<A NAME="RU05306ST-7A">7a</A>
Jenner G.
Tetrahedron Lett.
1999,
40:
491
<A NAME="RU05306ST-7B">7b</A>
Kurono N.
Yamaguchi M.
Suzuki K.
Ohkuma T.
J. Org. Chem.
2005,
70:
6530
For previous examples on the activation of TMSCN by coordination with the oxygen atom
of heteroatom oxides, see:
<A NAME="RU05306ST-8A">8a</A>
Chen F.
Feng X.
Qin B.
Zhang G.
Jiang Y.
Org. Lett.
2003,
5:
949
<A NAME="RU05306ST-8B">8b</A>
Kim SS.
Kim DW.
Rajagopal G.
Synlett
2004,
213
<A NAME="RU05306ST-8C">8c</A>
Zhou H.
Chen F.-X.
Qin B.
Feng X.
Zhang G.
Synlett
2004,
1077
<A NAME="RU05306ST-8D">8d</A>
Li Y.
He B.
Feng X.
Zhang G.
Synlett
2004,
1598
<A NAME="RU05306ST-8E">8e</A>
Kim SS.
Rajagopal G.
Kim DW.
Song DH.
Synth. Commun.
2004,
34:
2973
<A NAME="RU05306ST-8F">8f</A>
Chen F.-X.
Zhou H.
Liu X.
Qin B.
Feng X.
Zhang G.
Jiang Y.
Chem. Eur. J.
2004,
10:
4790
<A NAME="RU05306ST-8G">8g</A>
Chen F.-X.
Qin B.
Feng X.
Zhang G.
Jiang Y.
Tetrahedron
2004,
60:
10449
<A NAME="RU05306ST-8H">8h</A>
Chen F.-X.
Feng X.
Synlett
2005,
892
<A NAME="RU05306ST-8I">8i</A>
Wen Y.
Huang X.
Huang J.
Xiong Y.
Qin B.
Feng X.
Synlett
2005,
2445
<A NAME="RU05306ST-8J">8j</A>
Takahashi E.
Fujisawa H.
Yanai T.
Mukaiyama T.
Chem. Lett.
2005,
34:
604
<A NAME="RU05306ST-8K">8k</A>
Yamagiwa N.
Tian J.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2005,
127:
3413
<A NAME="RU05306ST-8L">8l</A>
Ryu DH.
Corey EJ.
J. Am. Chem. Soc.
2005,
127:
5384
<A NAME="RU05306ST-8M">8m</A>
Hatano M.
Ikeno T.
Miyamoto T.
Ishihara K.
J. Am. Chem. Soc.
2005,
127:
10776
<A NAME="RU05306ST-8N">8n</A>
Liu X.
Qin B.
Zhou X.
He B.
Feng X.
J. Am. Chem. Soc.
2005,
127:
12224
<A NAME="RU05306ST-8O">8o</A>
Kim SS.
Kwak JM.
Tetrahedron
2006,
62:
49
A similar type of silicon atom coordination has been proposed by others:
<A NAME="RU05306ST-9A">9a</A>
Dixon DA.
Hertler WR.
Chase DB.
Farnham WB.
Davidson F.
Inorg. Chem.
1988,
27:
4012
<A NAME="RU05306ST-9B">9b</A>
Sassaman MB.
Prakash GKS.
Olah GA.
J. Org. Chem.
1990,
55:
2016
<A NAME="RU05306ST-9C">9c</A>
Kobayashi S.
Tsuchiya Y.
Mukaiyama T.
Chem. Lett.
1991,
537
<A NAME="RU05306ST-9D">9d</A>
Wang Z.
Fetterly B.
Verkade JG.
J. Organomet. Chem.
2002,
646:
161
<A NAME="RU05306ST-9E">9e</A>
Wang L.
Huang X.
Jiang J.
Liu X.
Feng X.
Tetrahedron Lett.
2006,
47:
1581
<A NAME="RU05306ST-9F">9f</A>
See also ref. 8f-h, 8o.
<A NAME="RU05306ST-10">10</A>
General Procedure.
A mixture of acetal (1.0 mmol) and TMSCN (1.2 mmol) in MeNO2 (ca. 1.2 mL) was placed in a Teflon reaction vessel, and the mixture was allowed
to react at 0.8 GPa at the appropriate temperature for the specified time (Table
[2]
). After the mixture was cooled and the pressure was released, the mixture was concentrated
in vacuo. The crude product was purified by silica gel column chromatography (elution
with hexane-EtOAc) to afford the pure product in good to excellent yields.
<A NAME="RU05306ST-11">11</A>
Consistent with this expectation, benzaldehyde diacetyl acetal was also unreactive
under similar conditions (in MeNO2, 0.8 GPa, 80 °C, 24 h).
For recent examples of the use of this type of transformation, see:
<A NAME="RU05306ST-12A">12a</A>
Takaoka LR.
Buckmelter AJ.
La Cruz TE.
Rychnovsky SD.
J. Am. Chem. Soc.
2005,
127:
528
<A NAME="RU05306ST-12B">12b</A>
LaCruz TE.
Rychnovsky SD.
Org. Lett.
2005,
7:
1873