Synlett 2006(13): 2021-2026  
DOI: 10.1055/s-2006-948182
LETTER
© Georg Thieme Verlag Stuttgart · New York

An Environmentally Friendly Synthesis of Functionalized Indanes Using Electrochemical Cyclization of ortho-Halo-Substituted Homoallyl Ethers and Esters

Sandra Oliveroa, Rodolphe Perriota, Elisabet Duñach*a, Ashvin R. Barub, Eric D. Bellb, Ram S. Mohan*b
a Laboratoire des Molécules Bioactives et des Arômes, CNRS, UMR 6001, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
e-Mail: dunach@unice.fr;
b Laboratory for Environmentally Friendly Organic Synthesis, Department of Chemistry, Illinois Wesleyan University, Bloomington, IL 61701, USA
e-Mail: rmohan@iwu.edu;
Weitere Informationen

Publikationsverlauf

Received 3 February 2006
Publikationsdatum:
09. August 2006 (online)

Abstract

The electrochemical cyclization of a series of ortho-halo-substituted homoallyl ethers and esters to functionalized ­indanes catalyzed by Ni(II) catalyst precursors derived from ­Ni(cyclam)Br2, (cyclam = 1,4,8,11-tetraazacyclotetradecane) and Ni(tmc)Br2, (tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclo­tetradecane) is reported. The starting homoallyl ethers were synthesized using either a one-pot method for allylation of aldehydes or by direct allylation of the corresponding acetals using bismuth triflate as a catalyst. The remarkably low toxicity, low cost and ease of handling of bismuth salts coupled with the mild nature of the electrochemical procedure makes this approach to indane synthesis especially environmentally friendly and attractive.

    References and Notes

  • 1a Giese B. In Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds   Pergamon Press; Oxford: 1986. 
  • 1b Stork G. In Radical-Mediated Cyclization Processes - A Goal for Synthetic Efficiency   Bartmann W. Trost BM. Verlag Chemie; Basel: 1984. 
  • 2a Majumdar KC. Basu PK. Mukhopadhyay PP. Tetrahedron  2004,  60:  6239 
  • 2b Davies AG. Organotin Chemistry   2nd ed.:  Wiley and Sons; London: 2004. 
  • 3 Duñach E. Franco D. Olivero S. Eur. J. Org. Chem.  2003,  1605 
  • 4 Olivero S. Rolland J.-P. Duñach E. Organometallics  1998,  17:  3747 
  • 5a Hong B.-C. Sarshar S. Org. Prep. Proced. Int.  1999,  1:  1 
  • 5b Wickens P, Cantin L.-D, Chuang C.-Y, Dai M, Hentemann MF, Kumarasinghe E, Liang SX, Lowe DB, Shelekhin TE, Wang Y, Zhang C, Zhang H.-J, and Zhao Q. inventors; PCT Int. Appl., WO  2004011446. 
  • 5c Sekiguchi T, Nakagawa S, and Fujikura Y. inventors; JP  03044337. 
  • 5d Meakins SE, and Motion KR. inventors; Eur. Pat. Appl., EP  393742. 
  • 5e Frank WC. inventors; USA, US  93-79008. 
  • 5f Ohnuma H, Fujikura Y, Fujita M, and Toi N. inventors; Eur. Pat. Appl., EP  385497. 
  • 5g Sprecker MA, Weiss RA, Belko RP, and Molner EA. inventors; USA, US  6342612. 
  • 6a Wickens P, Cantin L.-D, Chuang C.-Y, Dai M, Hentemann MF, Kumarasinghe E, Liang SX, Lowe DB, Shelekhin TE, Wang Y, Zhang C, Zhang H.-J, and Zhao Q. inventors; PCT Int. Appl., WO  2004011446. 
  • 6b Sekiguchi T, Nakagawa S, and Fujikura Y. inventors; JP  03044337. 
  • 6c Meakins SE, and Motion KR. inventors; Eur. Pat. Appl., EP  393742. 
  • 6d Frank WC. inventors; USA, US  93-79008. 
  • 7 Anzalone PW. Baru AR. Danielson EM. Hayes PD. Nguyen MP. Panico AF. Smith RC. Mohan RS. J. Org. Chem.  2005,  70:  2091 
  • 8a Reglinski J. In Chemistry of Arsenic, Antimony and Bismuth   Norman NC. Blackie Academic and Professional; New York: 1998.  p.403-440  
  • 8b Organobismuth Chemistry   Suzuki H. Matano Y. Elsevier; Amsterdam: 2001. 
  • 8c Leonard NM. Wieland LC. Mohan RS. Tetrahedron  2002,  58:  8373 
  • 8d Antoniotti S. Synlett  2003,  1566 
  • 8e Gaspard-Iloughmane H. Le Roux C. Eur. J. Org. Chem.  2004,  2517 
  • 9 Bosnich B. Tobe ML. Webb GA. Inorg. Chem.  1965,  4:  1109 
  • 10 Gosden C. Healy KP. Pletcher D. J. Chem. Soc., Dalton Trans.  1978,  8:  972 
  • 11 Duñach E. Esteves AP. Medeiros MJ. Olivero S. New J. Chem.  2005,  4:  633 
  • 12 Armstrong DW. Gahm KH. Chang LW. Microchem. J.  1997,  57:  149 
  • 13 Izumi T. Murakami S. J. Chem. Technol. Biotechnol.  1994,  60:  23 
  • 14 Miura M. Yoshida M. Nojima M. Kusabayashi S. J. Chem. Soc., Perkin Trans. 1  1982,  1:  79 
  • 15 Yadav JS. Subba Reddy VB. Srihari P. Synlett  2001,  673 
  • 16 Watahiki T. Akabane Y. Mori S. Oriyama T. Org. Lett.  2003,  5:  3045 
  • 17 Hosomi A. Masahiko E. Sakurai H. Chem. Lett.  1976,  941 
  • 18 Aggarwal VK. Vennall GP. Synthesis  1998,  1822 
  • 19a

    Compound 1a (Method A, 76%): 1H NMR: δ = 1.79 (t, 3 H, J = 7.2 Hz), 2.42-2.46 (m, 2 H), 3.35-3.39 (m, 2 H), 4.72-4.73 (m, 1 H), 5.01-5.10 (m, 2 H), 5.83-5.89 (m, 1 H), 7.25-7.52 (m, 4 H). 13C NMR (12 peaks): δ = 14.8, 40.7, 64.1, 79.4, 116.4, 122.5, 127.1, 127.2, 128.2, 132.1, 134.2, 141.1. HRMS: m/e calcd for C12H15BrO: 254.0306 [M]; found: 253.0231 [M - 1].

  • 19b

    Compound 1b (Method A, 88%): 1H NMR: δ = 2.45 (m, 2 H), 3.24 (s, 3 H), 4.65 (dd, 1 H), 5.07 (m, 2 H), 5.85 (dp, 1 H), 7.42 (m, 4 H). 13C NMR (11 peaks): δ = 41.0, 50.9, 81.7, 117.0, 123.1, 127.5, 127.6, 128.8, 132.6, 134.4, 140.7. HRMS: m/e calcd for C11H13BrO: 240.0150 [M]; found: 239.0066 [M - 1].

  • 19c

    Compound 1c (Method D, 27%): 1H NMR: δ = 2.09 (s, 3 H), 2.55-2.60 (m, 2 H), 5.04-5.10 (t, 2 H, J = 6.43 Hz), 5.72-5.78 (m, 1 H), 6.12-6.15 (dd, 1 H, J = 7.67, 2.73 Hz), 7.09-7.54 (m, 4 H). 13C NMR (12 peaks): δ = 21.0, 39.5, 73.8, 118.1, 122.0, 127.2, 127.4, 129.0, 132.7, 132.9, 139.6, 169.7. HRMS: m/e calcd for C12H13BrO2: 268.0099 [M]; found: 268.0098 [M - 1].

  • 19d

    Compound 1d (Method C, 27%): 1H NMR: δ = 2.48 (t, 2 H, J = 6.9 Hz), 4.28-4.48 (dd, 2 H), 4.86 (t, 1 H, J = 6.18 Hz), 5.02-5.10 (m, 2 H), 5.81-5.94 (m, 1 H), 7.12-7.55 (m, 9 H). 13C NMR (15 peaks): δ = 41.2, 70.9, 79.6, 117.1, 123.1, 127.6, 127.7 (2 peaks), 127.9, 128.3, 128.9, 132.7, 134.5, 138.2, 141.0. HRMS: m/e calcd for C17H17BrO: 316.0463 [M]; found: 315.0381 [M - 1].

  • 19e

    Compound 1e (Method C, 77%): 1H NMR: δ = 1.18 (t, 3 H, J = 7.18 Hz), 2.42-2.46 (m, 2 H), 3.36-3.39 (m, 2 H), 4.76-4.80 (m, 1 H), 5.00-5.10 (m, 2 H), 5.79-5.92 (m, 1 H), 7.16-7.50 (m, 4 H). 13C NMR (12 peaks): δ = 14.7, 40.6, 64.1, 77.1, 116.3, 126.5, 126.9, 127.8, 128.8, 132.3, 134.2, 139.6. HRMS: m/e calcd for C12H15ClO: 210.0811 [M]; found: 209.0740 [M - 1].

  • 19f

    Compound 1f (Method B, 81%): this compound has been reported previously. [15] The spectral data are given here. 1H NMR: δ = 2.46 (m, 2 H), 3.22 (s, 3 H), 4.70 (dd, 1 H, J = 7.3, 4.9 Hz), 5.02 (m, 2 H), 5.86 (m, 1 H), 7.32 (m, 4 H). 13C NMR: (11 peaks): δ = 40.9, 56.9, 79.4, 116.9, 126.9, 127.2, 128.3, 129.3, 132.8, 134.3, 139.1.

  • 19g

    Compound 1g (Method D, 33%): this compound has been reported previously. [15] The spectral data are given here. 1H NMR: δ = 2.09 (s, 3 H), 2.54-2.62 (m, 2 H), 5.03-5.10 (t, 2 H, J = 6.18 Hz), 5.68-5.81 (m, 1 H), 6.18-6.23 (dd, 1 H, J = 7.7, 2.5 Hz), 7.19-7.41 (m, 4 H). 13C NMR (12 peaks): δ = 20.9, 39.4, 71.6, 118.1, 126.8, 127.1, 128.7, 129.5, 132.0, 132.9, 137.9, 169.7.

  • 19h

    Compound 1h (Method C, 35%): 1H NMR: δ = 2.50 (app t, 2 H), 4.38 (dd, 2 H), 4.91 (t, 1 H, J = 6.2 Hz), 5.02 (m, 1 H), 5.90 (dquar, 2 H), 7.30 (m, 9 H). 13C NMR (15 peaks): δ = 41.1, 70.9, 77.2, 117.0, 127.0, 127.5, 127.6, 127.7, 128.3, 128.4, 129.3, 132.9, 134.4, 138.2, 139.4. HRMS: m/e calcd for C17H17ClO: 272.0968 [M]; found: 271.0894 [M - 1].

  • 19i

    Compound 1i (Method A, 43%): 1H NMR: δ = 1.18 (t, 3 H, J = 7.18 Hz), 1.84 (s, 3 H), 2.26-2.42 (m, 2 H), 3.32-3.42 (m, 2 H), 4.78-4.85 (m, 3 H), 7.08-7.52 (m, 4 H). 13C (13 peaks): δ = 15.3, 22.9, 45.2, 64.6, 79.1, 112.4, 123.0, 127.6, 127.7, 128.6, 132.6, 142.1, 142.6. HRMS: m/e calcd for C13H17BrO: 268.0463 [M]; found: 267.0379 [M - 1].