Subscribe to RSS
DOI: 10.1055/s-2006-948211
Application of Olefin Metathesis for the Synthesis of Constrained β-Amino Esters from Norbornenes
Publication History
Publication Date:
09 August 2006 (online)
Abstract
Synthesis of a number of novel, conformationally rigid β-amino esters has been achieved via a tandem olefin metathesis reaction. The starting materials are readily accessible from the Diels-Alder adduct between cyclopentadiene and maleic anhydride.
Key words
metathesis - amino acids - Diels-Alder reactions
-
1a
Stragies R.Blechert S. Synlett 1998, 169 -
1b
Hagiwara H.Katsumi T.Endou S.Hoshi T.Suzuki T. Tetrahedron 2002, 58: 6651 -
1c
Arjona O.Csákӱ AG.Medel R.Plumet J. J. Org. Chem. 2002, 67: 1380 -
1d
Arjona O.Csákӱ AG.Leon V.Medel R.Plumet J. Tetrahedron Lett. 2004, 45: 565 -
1e
Arjona O.Csákӱ AG.Murcia MC.Plumet J. Arkivoc 2002, (v): 171 -
1f
Csákӱ AG.Medel R.Murcia MC.Plumet J. Helv. Chim. Acta 2005, 88: 1387 -
1g
Usher CL.Maria E.-J.Ion G.Wright DL. Angew. Chem. Int. Ed. 2002, 41: 4560 -
1h
Funel J.-A.Prunet J. Synlett 2005, 235 -
1i
Holtsclaw J.Koreeda M. Org. Lett. 2004, 6: 3719 -
1j
Banti D.North M. Adv. Synth. Catal. 2002, 344: 694 -
2a
Takao K.-I.Yasui H.Yamamoto S.Saaki D.Kawasaki D.Watanabe G.Tadano K.-I. J. Org. Chem. 2004, 69: 8789 -
2b
Wrobleski A.Sahasrabudhe K.Aube J. J. Am. Chem. Soc. 2004, 126: 5475 -
2c
Weatherhead GS.Cortez GA.Schrock RR.Hoveyda AH. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5805 -
2d
Chandler CL.Phillips AJ. Org. Lett. 2005, 7: 3493 - 3
Winkler JD.Asselin SM.Shepard S.Yuan J. Org. Lett. 2004, 6: 3821 -
4a
Canonne P.Akssira M.Dahdouh HK.Boumzebra M. Tetrahedron 1993, 49: 1985 -
4b
Bloch R.Guibe-Jampel E.Girard C. Tetrahedron Lett. 1985, 26: 4087 -
4c
Bolm C.Schiffers I.Atodiresei I.Hackenberger CPR. Tetrahedron: Asymmetry 2003, 14: 3455 -
4d
Bolm C.Atodiresei I.Schiffers I. Org. Synth. 2005, 82: 120 -
4e
Bolm C.Schiffers I.Dinter CL.Defrere L.Gerlach A.Raabe G. Synthesis 2001, 1719 - 5
Sabitha G.Srividya R.Yadav JS. Tetrahedron 1999, 55: 4015 - 6
Smith PAS. Org. React. (NY) 1946, 3: 337 -
7a
Bolm C.Dinter CL.Schiffers I.Defrere L. Synlett 2001, 1875 -
7b
Kanaoka S.Grubbs RH. Macromolecules 1995, 28: 4707 - 8
Lloyd-Jones GC.Margue RG.de Vries JG. Angew. Chem. Int. Ed. 2005, 44: 7442 -
9a RRM of a structure related to 2 has been reported, see:
Maechling S.Norman SE.Mckendrick JE.Basra S.Knoppner K.Blechert S. Tetrahedron Lett. 2006, 47: 189 -
9b
Conditions for the conversion warranted exposure of the material to high catalyst loading (20 mol%) and ethene gas (3 atm) for three cycles to obtain good conversion (88%).
References and Notes
The most diagnostic peaks for the epimerization are: cis-amino ester Heq δ = 3.3 ppm and trans-amino ester Hax δ = 2.6 ppm.
11
General Procedure for Olefin Metathesis Reactions - Synthesis of 5.
A flask was charged with alkyne 4 (51 mg, 0.14 mmol) and freshly distilled CH2Cl2 (50 mL). Ethene gas was then bubbled through the solution for 20 s. Grubbs I catalyst (11 mg, 0.014 mmol) was then added and a balloon filled with ethene gas was fitted to the flask. The reaction was allowed to stir at r.t. overnight. The reaction mixture was concen-trated in vacuo and subjected to column chromatography eluting with PE-EtOAc (19:1 to 4:1) to furnish 5 as a white solid in 96% yield (52 mg). Mp 144-146 °C. 1H NMR (250 MHz, CDCl3): δ = 1.16-1.27 (m, 1 H, CH2CHCHN), 2.20-2.28 (m, 1 H, CH2CHCHN), 2.39 (s, 3 H, CH3), 2.56-2.66 (br s, 1 H, CHCO2), 2.60 (br s, 1 H, CHCHN), 2.71-2.86 (m, 1 H, CHCHCO2), 3.68 (s, 3 H, CO2CH3), 3.76 (dt, 1 H, NCH2, J = 18.0, 2.0 Hz), 4.45-4.92 (m, 1 H, NCH2), 4.45-4.92 (m, 1 H, CHN), 4.92-5.17 (m, 4 H, 2 × CH=CH2) 5.42 (br s, 1 H, HC=C*), 5.58 (ddd, 1 H, HC=CH2, J = 17.5, 10.0, 7.5 Hz), 6.16 (dd, 1 H, HC=CH2, J = 18.0, 11.0 Hz), 7.28 (m, 2 H, 2 × ArH), 7.79 (m, 2 H, 2 × ArH). 13C NMR (62.5 MHz, CDCl3): δ = 21.9 (CH3), 34.7 (CHCHCO2), 36.2 (CH2CHCHN), 39.2 (NCH2), 44.2 (CHCHN), 51.1 (CHCO2), 52.5 (CO2CH3), 59.5 (CHN), 112.8 (CH=CH2), 115.8 (CH=CH2), 127.4 (2 × ArC), 129.9 (2 × ArC), 130.6 (HC=C*), 131.6 (HC=C*), 136.7 (CH=CH2) 137.8 (1 × ArC), 139.6 (CH=CH2), 143.6 (1 × ArC), 173.4 (C=O). IR (thin film): νmax = 1163, 1345 (SO2), 1735 (C=O), 2952 (sat. C-H) cm-1. MS (CI, NH3): m/z calcd for C21H25NO4S: 387.1504; found: 387.1497 [M+].
Analytical data for 10: 1H NMR (250 MHz, CDCl3): δ = 1.23 (ddd, 1 H, CH2CHCH=CH, J = 13.0, 8.5, 4.5 Hz), 2.24 (m, 1 H, CH2CHCH=CH), 2.40 (s, 3 H, CH3), 2.48-2.50 (br m, 1 H, CHCH=CH), 2.66-2.74 (m, 1 H, CHCO2CH3), 2.78-2.87 (m 1 H, CHCH=CH2), 3.66 (s, 3 H, CO2CH3), 3.68-3.78 (m, 1 H, CH2N), 4.14-4.22 (m, 1 H, CH2N), 4.55 (dd, CHN, 1 H, J = 10.5, 8.0 Hz), 4.91-5.01 (m, 2 H, CH=CH2), 5.45-5.71 (m, 2 H, CH=CH), 5.45-5.71 (m, 1 H, CH=CH2), 7.25 (m, 2 H, 2 × ArH), 7.66 (m, 2 H, 2 × ArH). 13C NMR (62 5 MHz, CDCl3): δ = 21.9 (CH3), 34.2 (CHCH=CH), 35.8 (CH2CHCH=CH), 39.8 (CH2N), 44.1 (CHCH=CH2), 50.9 (CHCO2CH3), 52.4 (CO2CH3), 59.6 (CHN), 115.6 (CH=CH2), 121.4 (HC=CH), 127.4 (2 × ArC), 129.9 (2 × ArC), 130.8 (HC=CH), 138.0 (1 × ArC), 140.0 (CH=CH2), 143.5 (1 × ArC), 173.6 (C=O). IR (thin film): νmax = 1164, 1345 (SO2), 1734 (C=O), 2952 (sat. C-H) cm-1. MS (CI, NH3): m/z calcd for C19H23NO4S: 361.1348; found: 361.1355 [M+].