ABSTRACT
Since the adult respiratory distress syndrome was first described substantial progress has been made in understanding the pathogenesis of this complex syndrome. This review summarizes our current understanding of the pathophysiology of what is now termed the acute respiratory distress syndrome (ARDS) and its less severe form acute lung injury (ALI), with an emphasis on cellular and molecular mechanisms of injury that may represent potential therapeutic targets. Although it is difficult to synthesize all of these abnormalities into a single, unified, pathogenetic pathway, a theme that emerges repeatedly is that of imbalance, be it between pro- and anti-inflammatory cytokines, oxidants and antioxidants, procoagulants and anticoagulants, neutrophil recruitment and activation and mechanisms of neutrophil clearance, or proteases and protease inhibitors. Future therapies aimed at restoring the overall balance of cytokines, oxidants, coagulants, and proteases may ultimately be successful where therapies that target individual cytokines or other mediators have not.
KEYWORDS
Acute lung injury - acute respiratory distress syndrome - pathophysiology - noncardiogenic pulmonary edema
REFERENCES
-
1
Ashbaugh D G, Bigelow D B, Petty T L et al..
Acute respiratory distress in adults.
Lancet.
1967;
2
319-323
-
2
Ware L B, Matthay M A.
Medical progress: the acute respiratory distress syndrome.
N Engl J Med.
2000;
342
1334-1349
-
3
Lewis J F, Jobe A H.
Surfactant and the adult respiratory distress syndrome.
Am Rev Respir Dis.
1993;
147
218-233
-
4
Gregory T J, Longmore W J, Moxley M A et al..
Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome.
J Clin Invest.
1991;
88
1976-1981
-
5
Nuckton T J, Alonso J A, Kallet R H et al..
Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome.
N Engl J Med.
2002;
346
1281-1286
-
6
Pelosi P, D'Onofrio D, Chiumello D et al..
Pulmonary and extrapulmonary acute respiratory distress syndrome are different.
Eur Respir J Suppl.
2003;
42
48S-56S
-
7
Pratt P C, Vollmer R T, Shelburne J D et al..
Pulmonary morphology in a multihospital collaborative extracorporeal membrane oxygenation project.
Am J Pathol.
1979;
95
191-214
-
8
Bachofen M, Weibel E R.
Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia.
Am Rev Respir Dis.
1977;
116
589-615
-
9
Bachofen M, Weibel E R.
Structural alterations of lung parenchyma in the adult respiratory distress syndrome.
Clin Chest Med.
1982;
3
35-56
-
10
Matthay M A, Zimmerman G A, Esmon C et al..
Future research directions in acute lung injury: summary of a National Heart, Lung and Blood Institute working group.
Am J Respir Crit Care Med.
2003;
167
1027-1035
-
11
Anderson W R, Thielen K.
Correlative study of adult respiratory distress syndrome by light, scanning, and transmission electron microscopy.
Ultrastruct Pathol.
1992;
16
615-628
-
12
Matthay M A, Broaddus V C.
Fluid and hemodynamic management in acute lung injury.
Semin Respir Crit Care Med.
1994;
15
271-288
-
13
Ware L B, Matthay M A.
Clinical practice: acute pulmonary edema.
N Engl J Med.
2005;
353
2788-2796
-
14
Matthay M A, Folkesson H G, Clerici C.
Lung epithelial fluid transport and the resolution of pulmonary edema.
Physiol Rev.
2002;
82
569-600
-
15
Ware L B, Matthay M A.
Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome.
Am J Respir Crit Care Med.
2001;
163
1376-1383
-
16
Prewitt R M, McCarthy J, Wood L DH.
Treatment of acute low pressure pulmonary edema in dogs.
J Clin Invest.
1981;
67
409-418
-
17
Zimmerman G A, Albertine K H, Carveth H J et al..
Endothelial activation in ARDS.
Chest.
1999;
116
18S-24S
-
18
Raijmakers P GHM, Groeneveld A BJ, Teule G JJ et al..
The diagnostic value of the 67gallium pulmonary leak index in pulmonary edema.
J Nucl Med.
1996;
37
1316-1322
-
19
Fein A, Grossman R F, Jones J G et al..
The value of edema protein measurements in patients with pulmonary edema.
Am J Med.
1979;
67
32-39
-
20
Sprung C, Rackow E, Fein I et al..
The spectrum of pulmonary edema: differentiation of cardiogenic intermediate and noncardiogenic forms of pulmonary edema.
Am Rev Respir Dis.
1981;
124
718-722
-
21
Matthay M A, Wiener-Kronish J P.
Intact epithelial barrier function is critical for the resolution of alveolar edema in humans.
Am Rev Respir Dis.
1990;
142
1250-1257
-
22
Pittet J F, MacKersie R C, Martin T R et al..
Biological markers of acute lung injury: prognostic and pathogenetic significance.
Am J Respir Crit Care Med.
1997;
155
1187-1205
-
23
Fagan K A, McMurtry I F, Rodman D M.
Role of endothelin-1 in lung disease.
Respir Res.
2001;
2
90-101
-
24
Pittet J F, Morel D R, Hemsen A et al..
Elevated plasma endothelin-1 concentrations are associated with the severity of illness in patients with sepsis.
Ann Surg.
1991;
213
261-264
-
25
Morel D R, Lacroix J S, Hemsen A et al..
Increased plasma and pulmonary lymph levels of endothelin during endotoxin shock.
Eur J Pharmacol.
1989;
167
427-428
-
26
Miyauchi T, Yanagisawa M, Tomizawa T et al..
Increased concentrations of endothelin-1 and big endothelin-1 in acute myocardial infarction.
Lancet.
1989;
2
53-54
-
27
Druml W, Steltzer H, Waldhausl W et al..
Endothelin-1 in adult respiratory distress syndrome.
Am Rev Respir Dis.
1993;
148
1169-1173
-
28
Langleben D, Demarchie M, Laporta D et al..
Endothelin-1 in acute lung injury and the adult respiratory distress syndrome.
Am Rev Respir Dis.
1993;
148
1646-1650
-
29
Sanai L, Haynes W G, Mackenzie A et al..
Endothelin production is sepsis and the adult respiratory distress syndrome.
Intensive Care Med.
1996;
22
52-56
-
30
Ware L B, Conner E R, Matthay M A.
von Willebrand factor antigen is an independent marker of poor outcome in patients with early acute lung injury.
Crit Care Med.
2001;
29
2325-2331
-
31
Ware L B, Eisner M D, Thompson B T et al..
Significance of von Willebrand factor in septic and non-septic patients with acute lung injury.
Am J Respir Crit Care Med.
2004;
170
766-772
-
32
Hurley J V.
Types of pulmonary microvascular injury.
Ann NY Acad Sci.
1982;
384
269-286
-
33
Wiener-Kronish J P, Albertine K H, Matthay M A.
Differential responses of the endothelial and epithelial barriers of the lung in sheep to Escherichia coli endotoxin.
J Clin Invest.
1991;
88
864-875
-
34
Baker C S, Evans T W, Randle B J et al..
Damage to surfactant-specific protein in acute respiratory distress syndrome.
Lancet.
1999;
353
1232-1237
-
35
Bitterman P B.
Pathogenesis of fibrosis in acute lung injury.
Am J Med.
1992;
92
39S-43S
-
36
Matthay M A, Eschenbacher W C, Goetzl E J.
Elevated concentrations of leukotriene D4 in pulmonary edema fluid of patients with adult respiratory distress syndrome.
J Clin Immunol.
1984;
4
479-483
-
37
Parsons P E, Fowler A A, Hyers T et al..
Chemotactic activity in bronchoalveolar lavage fluid from patients with the adult respiratory distress syndrome.
Am Rev Respir Dis.
1985;
132
490-493
-
38
Steinberg K P, Milberg J A, Martin T R et al..
Evolution of bronchoalveolar cell populations in the adult respiratory distress syndrome.
Am J Respir Crit Care Med.
1994;
150
113-122
-
39
Warshawski F J, Sibbald W, Driedger A et al..
Abnormal neutrophil-pulmonary interaction in the adult respiratory distress syndrome: qualitative and quantitative assessment of pulmonary-neutrophil kinetics in humans with in vivo indium-111 neutrophil scintigraphy.
Am Rev Respir Dis.
1986;
133
792-804
-
40
Matthay M A.
Conference summary: acute lung injury.
Chest.
1999;
116
119S-126S
-
41
Prescott S M, McIntyre T M, Zimmerman G.
Two of the usual suspects, platelet-activating factor and its receptor, implicated in acute lung injury.
J Clin Invest.
1999;
104
1019-1020
-
42
Laufe M D, Simon R H, Flint A et al..
Adult respiratory distress syndrome in neutropenic patients.
Am J Med.
1986;
80
1022-1026
-
43 Worthen G S, Downey G P. Mechanisms of neutrophil mediated injury. In: Evans TW, Haslett C ARDS Acute Respiratory Distress in Adults. London, UK; Chapman & Hall 1996: 99-114
-
44
Doerschuk C M, Quinlan W M, Doyle N A et al..
The role of P-selectin and ICAM-1 in acute lung injury as determined using blocking antibodies and mutant mice.
J Immunol.
1996;
157
4609-4614
-
45
Folkesson H G, Matthay M A.
Inhibition of CD18 or CD11b attenuates acute lung injury after acid instillation in rabbits.
J Appl Physiol.
1997;
82
1743-1750
-
46
Mulligan M S, Polley M J, Bayer R J.
Neutrophil-dependent acute lung injury: requirement for P-selectin (GMP-140).
J Clin Invest.
1992;
90
1600-1607
-
47
Nagase T, Ohga E, Sudo E et al..
Intercellular adhesion molecule-1 mediates acid aspiration-induced lung injury.
Am J Respir Crit Care Med.
1996;
154
504-510
-
48
Doerschuk C M.
Mechanisms of leukocyte sequestration in inflamed lungs.
Microcirculation.
2001;
8
71-88
-
49
Worthen G S, Schwab B, Elson E L et al..
Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries.
Science.
1989;
245
183-185
-
50
Lavkan A H, Astiz M E, Rackow E C.
Effects of proinflammatory cytokines and bacterial toxins on neutrophil rheologic properties.
Crit Care Med.
1998;
26
1677-1682
-
51
Erzurum S, Downey G, Doherty D et al..
Mechanisms of lipopolysaccharide induced neutrophil retention.
J Immunol.
1992;
149
154-162
-
52
Inano H, English D, Doerschuk C.
Effect of zymosan activated plasma on deformability of rabbit polymorphonuclear leukocytes.
J Appl Physiol.
1992;
73
1370-1376
-
53
Puneet P, Moochhala S, Bhatia M.
Chemokines in acute respiratory distress syndrome.
Am J Physiol Lung Cell Mol Physiol.
2005;
288
L3-15
-
54
Moraes T J, Zurawska J H, Downey G P.
Neutrophil granule contents in the pathogenesis of lung injury.
Curr Opin Hematol.
2006;
13
21-27
-
55
Suzuki T, Moraes T J, Vachon E et al..
Proteinase-activated receptor-1 mediates elastase-induced apoptosis of human lung epithelial cells.
Am J Respir Cell Mol Biol.
2005;
33
231-247
-
56
Donnelly S C, MacGregor I, Zamani A et al..
Plasma elastase levels and the development of the adult respiratory distress syndrome.
Am J Respir Crit Care Med.
1995;
151
1428-1433
-
57
Gando S, Kameue T, Nanzaki S et al..
Increased neutrophil elastase, persistent intravascular coagulation, and decreased fibrinolytic activity in patients with posttraumatic acute respiratory distress syndrome.
J Trauma.
1997;
42
1068-1072
-
58
Christner P, Fein A M, Goldberg S et al..
Collagenase in the lower respiratory tract of patients with adult respiratory distress syndrome.
Am Rev Respir Dis.
1985;
131
690-695
-
59
Delclaux C, d'Ortho M P, Delacourt C et al..
Gelatinases in epithelial lining fluid of patients with adult respiratory distress syndrome.
Am J Physiol.
1997;
272
L442-L51
-
60
Pugin J, Verghese G, Widmer M-C et al..
The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of ARDS.
Crit Care Med.
1999;
27
304-312
-
61
Ricou B, Nicod L, Lacaraz S et al..
Matrix metalloproteinases and TIMP in acute respiratory distress syndrome.
Am J Respir Crit Care Med.
1996;
154
346-352
-
62
Weiland J E, Davis B, Holter J F et al..
Lung neutrophils in the adult respiratory distress syndrome: clinical and pathophysiologic significance.
Am Rev Respir Dis.
1986;
133
218-225
-
63
Lee C T, Fein A M, Lipmann M et al..
Elastolytic activity in pulmonary lavage fluid from patients with adult respiratory distress syndrome.
N Engl J Med.
1981;
304
192-196
-
64
McGuire W W, Spragg R C, Cohen A B et al..
Studies on the pathogenesis of the adult respiratory distress syndrome.
J Clin Invest.
1982;
69
543-553
-
65
Suter P M, Suter S, Girardin E et al..
High bronchoalveolar levels of tumor necrosis factor and its inhibitors, interleukin-1, interferon, and elastase in patients with adult respiratory distress syndrome after trauma, shock, or sepsis.
Am Rev Respir Dis.
1992;
145
1016-1022
-
66
Fowler A A, Walchak S, Giclas P C et al..
Characterization of antiprotease activity in the adult respiratory distress syndrome.
Chest.
1982;
81
50S-51S
-
67
Idell S, Kucich U, Fein A et al..
Neutrophil elastase releasing factors in bronchoalveolar lavage from patients with adult respiratory distress syndrome.
Am Rev Respir Dis.
1985;
132
1098-1105
-
68
Gadek J E, Pacht E R.
The interdependence of lung antioxidants and antiprotease defense in ARDS.
Chest.
1996;
110
273S-277S
-
69
Geerts L, Jorens P G, Willems J et al..
Natural inhibitors of neutrophil function in acute respiratory distress syndrome.
Crit Care Med.
2001;
29
1920-1924
-
70
Matute-Bello G, Liles W C, Radella II F et al..
Neutrophil apoptosis in the acute respiratory distress syndrome.
Am J Respir Crit Care Med.
1997;
156
1969-1977
-
71
Lesur O, Kokis A, Hermans C et al..
Interleukin-2 involvement in early acute respiratory distress syndrome: relationship with polymorphonuclear neutrophil apoptosis and patient survival.
Crit Care Med.
2000;
28
3814-3822
-
72
Sookhai S, Wang J J, McCourt M et al..
A novel therapeutic strategy for attenuating neutrophil-mediated lung injury in vivo.
Ann Surg.
2002;
235
285-291
-
73
Hussain N, Wu F, Zhu L et al..
Neutrophil apoptosis during the development and resolution of oleic acid-induced acute lung injury in the rat.
Am J Respir Cell Mol Biol.
1998;
19
867-874
-
74
Goodman R, Pugin J, Lee J S et al..
Cytokine mediated inflammation in acute lung injury.
Cytokine Growth Factor Rev.
2003;
14
523-535
-
75
Nathan C F.
Secretory products of macrophages.
J Clin Invest.
1987;
79
319-326
-
76
Miller E J, Cohen A B, Matthay M A.
Increased interleukin-8 concentrations in the pulmonary edema fluid of patients with acute respiratory distress syndrome from sepsis.
Crit Care Med.
1996;
24
1448-1454
-
77
Folkesson H G, Matthay M A, Hebert C A et al..
Acid aspiration induced lung injury in rabbits is mediated by interleukin-8 dependent mechanisms.
J Clin Invest.
1995;
96
107-116
-
78
Yokoi K, Mukaida N, Harada A et al..
Prevention of endotoxemia-induced acute respiratory distress syndrome-like lung injury in rabbits by a monoclonal antibody to IL-8.
Lab Invest.
1997;
76
375-384
-
79
Martin T R.
Cytokines and the acute respiratory distress syndrome (ARDS): a question of balance.
Nat Med.
1997;
3
272-273
-
80
Parsons P E.
Interleukin-10: the ambiguity in sepsis continues.
Crit Care Med.
1998;
26
818-819
-
81
Kurdowska A, Noble J M, Steinberg K P et al..
Anti-interleukin 8 autoantibody: interleukin 8 complexes in the acute respiratory distress syndrome.
Am J Respir Crit Care Med.
2001;
163
463-468
-
82
Kurdowska A, Miller E J, Noble J M et al..
Anti-IL-8 autoantibodies in alveolar fluid from patients with the adult respiratory distress syndrome.
J Immunol.
1996;
157
2699-2706
-
83
Fan J, Ye R D, Malik A B.
Transcriptional mechanisms in acute lung injury.
Am J Physiol Lung Cell Mol Physiol.
2001;
281
L1037-L50
-
84
Christman J W, Sadikot R T, Blackwell T.
The role of nuclear factor-κ B in pulmonary diseases.
Chest.
2000;
117
1482-1487
-
85
Lum H, Roebuck K A.
Oxidant stress and endothelial cell dysfunction.
Am J Physiol Cell Physiol.
2001;
280
C719-C741
-
86
Waters C M, Savla U, Panos R J.
KGF prevents hydrogen peroxide-induced increases in airway epithelial cell permeability.
Am J Physiol.
1997;
272
L681-L9
-
87
Hu P, Ischiropoulos H, Beckman J S et al..
Peroxynitrite inhibition of oxygen consumption and sodium transport in alveolar type II cells.
Am J Physiol.
1994;
266
L628-L34
-
88
Haddad J J.
Oxygen homeostasis, thiol equilibrium and redox regulation of signalling transcription factors in the alveolar epithelium.
Cell Signal.
2002;
14
799-810
-
89
Chabot F, Mitchell J A, Gutteridge J MC et al..
Reactive oxygen species in acute lung injury.
Eur Respir J.
1998;
11
745-757
-
90
Webb H H, Tierney D F.
Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: protection by positive end expiratory pressure.
Am Rev Respir Dis.
1974;
110
556-565
-
91
Dreyfuss D, Basset G, Soler P et al..
Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats.
Am Rev Respir Dis.
1985;
132
880-884
-
92
Dreyfuss D, Soler P, Basset G et al..
High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure.
Am Rev Respir Dis.
1988;
137
1159-1164
-
93
Bowton D L, Kong D L.
High tidal volume ventilation produces increased lung water in oleic acid-injured rabbit lungs.
Crit Care Med.
1989;
17
908-911
-
94
Corbridge T C, Wood L DH, Crawford G P et al..
Adverse effects of large tidal volumes and low PEEP in canine acid aspiration.
Am Rev Respir Dis.
1990;
142
311-315
-
95
Tremblay L, Valenza F, Ribeiro S P et al..
Injurious ventilatory strategies increase cytokines and c-fos mRNA expression in an isolated rat lung model.
J Clin Invest.
1997;
99
944-952
-
96
Pardo A, Ridge K, Segura L et al..
Gelatinase A and interstitial collagenase are upregulated during high tidal volume mechanical ventilation [abstract].
Am J Respir Crit Care Med.
1996;
153
A531
-
97
Howard A B, Alexander R, Nerem R et al..
Cyclic strain induces an oxidative stress in endothelial cells.
Am J Physiol.
1997;
272
C421-C427
-
98
Slutsky A S, Tremblay L N.
Multiple system organ failure: is mechanical ventilation a contributing factor?.
Am J Respir Crit Care Med.
1998;
157
1721-1725
-
99
The Acute Respiratory Distress Syndrome Network .
Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome.
N Engl J Med.
2000;
342
1301-1308
-
100
Ranieri V M, Suter P M, Tortorella C et al..
Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome.
JAMA.
1999;
282
54-61
-
101
Ware L B, Bastarache J A, Wang L.
Coagulation and fibrinolysis in human acute lung injury: new therapeutic targets?.
Keio J Med.
2005;
54
142-149
-
102
Idell S.
Anticoagulants for acute respiratory distress syndrome: can they work?.
Am J Respir Crit Care Med.
2001;
164
517-520
-
103
Abraham E.
Coagulation abnormalities in acute lung injury and sepsis.
Am J Respir Cell Mol Biol.
2000;
22
401-404
-
104
Seeger W, Hubel J, Klapettek K et al..
Procoagulant activity in bronchoalveolar lavage of severely traumatized patients-relation to development of acute respiratory distress.
Thromb Res.
1991;
61
53-64
-
105
Fuchs-Buder T, deMoerloose P, Ricou B et al..
Time course of procoagulant activity and D dimer in bronchoalveolar fluid of patients at risk for or with acute respiratory distress syndrome.
Am J Respir Crit Care Med.
1996;
153
163-167
-
106
Idell S, Koenig K, Fair D et al..
Serial abnormalities of fibrin turnover in evolving adult respiratory distress syndrome.
Am J Physiol.
1991;
261
L240-L8
-
107
Idell S, Gonzalez K, Bradford H et al..
Procoagulant activity in bronchoalveolar lavage in the adult respiratory distress syndrome.
Am Rev Respir Dis.
1987;
136
1466-1474
-
108
Idell S, James K, Levin E et al..
Local abnormalities in coagulation and fibrinolytic pathways predispose to alveolar fibrin deposition in the adult respiratory distress syndrome.
J Clin Invest.
1989;
84
695-705
-
109
Ware L B, Matthay M A.
Lower plasma protein C is associated with worse clinical outcomes in patients with acute lung injury [abstract].
Am J Respir Crit Care Med.
2002;
165
A476
-
110
Bertozzi P, Astedt B, Zenzius L et al..
Depressed bronchoalveolar urokinase activity in patients with adult respiratory distress syndrome.
N Engl J Med.
1990;
322
890-897
-
111
Prabhakaran P, Ware L B, White K E, Cross M T, Matthay M A, Olman M A.
Elevated levels of plasminogen activator inhibitor-1 in pulmonary edema fluid predict the outcome of clinical acute lung injury.
Am J Physiol: Lung Cell Mol Physiol.
2003;
285(1)
L20-L28
-
112
McDonald J.
The yin and yang of fibrin in the airways.
N Engl J Med.
1990;
322
929-931
-
113
Idell S.
Extravascular coagulation and fibrin deposition in acute lung injury.
New Horiz.
1994;
2
566-574
-
114
Matthay M.
Severe sepsis-a new treatment with both anticoagulant and anti-inflammatory properties.
N Engl J Med.
2001;
344
759-762
-
115
Vincent J-L.
New therapeutic implications of anticoagulation mediator replacement in sepsis and acute respiratory distress syndrome.
Crit Care Med.
2000;
28
S83-S5
-
116
Lo S, Lai L, Ja C et al..
Thrombin-induced generation of neutrophil activating factors in the blood.
Am J Pathol.
1988;
130
22-32
-
117
Kaplanski G, Fabrigoule M, Boulay V et al..
Thrombin induces endothelial type II activation in vitro: IL-1 and TNF-alpha-independent IL-8 secretion and E-selectin expression.
J Immunol.
1997;
158
5435-5441
-
118
Coughlin S.
Thrombin signaling and protease-activated receptors.
Nature.
2000;
407
258-264
-
119
Bernard G, Vincent J-L, Laterre P-F et al..
Efficacy and safety of recombinant human activated protein C for severe sepsis.
N Engl J Med.
2001;
344
699-709
-
120
Fukuda Y, Ishizaki M, Masuda Y et al..
The role of intra-alveolar fibrosis in the process of pulmonary structural remodeling in patients with diffuse alveolar damage.
Am J Pathol.
1987;
126
171-182
-
121
Martin C, Papazian L, Payan M J et al..
Pulmonary fibrosis correlates with outcome in the adult respiratory distress syndrome.
Chest.
1995;
107
196-200
-
122
Zapol W M, Trelstad R L, Coffey J W et al..
Pulmonary fibrosis in severe acute respiratory failure.
Am Rev Respir Dis.
1979;
119
547-554
-
123
Pugin J, Ricou B, Stenberg K P et al..
Proinflammatory activity in bronchoalveolar lavage fluids from patients with ARDS, a prominent role for interleukin-1.
Am J Respir Crit Care Med.
1996;
153
1850-1856
-
124
Chesnutt A N, Matthay M A, Tibayan F A et al..
Early detection of type III procollagen peptide in acute lung injury.
Am J Respir Crit Care Med.
1997;
156
840-845
-
125
Clark J G, Milberg J A, Steinberg K P et al..
Type III procollagen peptide in the adult respiratory distress syndrome.
Ann Intern Med.
1995;
122
17-23
-
126
Lindroos P M, Coin P G, Osornio-Vargas A R et al..
Interleukin-1β (IL-1β) and the IL-1β alpha 2-macroglobulin complex upregulate the platelet-derived growth factor alpha on rat pulmonary fibroblasts.
Am J Respir Cell Mol Biol.
1995;
13
455-465
-
127
Martinet Y, Menard O, Vaillant P et al..
Cytokines in human lung fibrosis.
Arch Toxicol Suppl.
1996;
18
127-139
-
128
Marshall R, Bellingan G, Webb S et al..
Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome.
Am J Respir Crit Care Med.
2000;
162
1783-1788
-
129
Olman M A, White K E, Ware L et al..
Microarray analysis indicates that pulmonary edema fluid from patients with acute lung injury mediates inflammation, mitogen gene expression, and fibroblast proliferation through bioactive interleukin-1.
Chest.
2002;
121
69S-70S
-
130
Jurkovich G J, Rivara F P, Gurney J G et al..
The effect of acute alcohol intoxication and chronic alcohol abuse on outcome from trauma.
JAMA.
1993;
270
51-56
-
131
Hudson L D, Milberg J A, Anardi D et al..
Clinical risks for development of the acute respiratory distress syndrome.
Am J Respir Crit Care Med.
1995;
151
293-301
-
132
Moss M, Bucher B, Moore F A et al..
The role of chronic alcohol abuse in the development of acute respiratory distress syndrome in adults.
JAMA.
1996;
275
50-54
-
133
Moss M, Parsons P E, Steinberg K P et al..
Chronic alcohol abuse is associated with an increased incidence of acute respiratory distress syndrome and severity of multiple organ dysfunction in patients with septic shock.
Crit Care Med.
2003;
31
869-877
-
134
Moss M, Burnham E L.
Chronic alcohol abuse, acute respiratory distress syndrome, and multiple organ dysfunction.
Crit Care Med.
2003;
31
S207-S12
-
135
Guidot D M, Roman J.
Chronic ethanol ingestion increases susceptibility to acute lung injury: role of oxidative stress and tissue remodeling.
Chest.
2002;
122(Suppl 6)
309S-314S
-
136
Holguin F, Moss I, Brown L A et al..
Chronic ethanol ingestion impairs alveolar type II cell glutathione homeostasis and function and predisposes to endotoxin-mediated acute edematous lung injury in rats.
J Clin Invest.
1998;
101
761-768
-
137
Velasquez A, Bechara R I, Lewis J F et al..
Glutathione replacement preserves the functional surfactant phospholipid pool size and decreases sepsis-mediated lung dysfunction in ethanol-fed rats.
Alcohol Clin Exp Res.
2002;
26
1245-1251
-
138
Moss M, Guidot D M, Wong-Lambertina M et al..
The effects of chronic alcohol abuse on pulmonary glutathione homeostasis.
Am J Respir Crit Care Med.
2000;
161
414-419
-
139
Bunnell E, Pacht E R.
Oxidized glutathione is increased in the alveolar fluid of patients with the adult respiratory distress syndrome.
Am Rev Respir Dis.
1993;
148
1174-1178
-
140
Pacht E R, Timerman A P, Lykens M G et al..
Deficiency of alveolar fluid glutathione in patients with sepsis and the adult respiratory distress syndrome.
Chest.
1991;
100
1397-1404
-
141
Brown L A, Harris F L, Bechara R et al..
Effect of chronic ethanol ingestion on alveolar type II cell: glutathione and inflammatory mediator-induced apoptosis.
Alcohol Clin Exp Res.
2001;
25
1078-1085
-
142
Brown L A, Harris F L, Guidot D M.
Chronic ethanol ingestion potentiates TNF-alpha-mediated oxidative stress and apoptosis in rat type II cells.
Am J Physiol Lung Cell Mol Physiol.
2001;
281
L377-L386
-
143
Guidot D M, Modelska K, Lois M et al..
Ethanol ingestion via glutathione depletion impairs alveolar epithelial barrier function in rats.
Am J Physiol Lung Cell Mol Physiol.
2000;
279
L127-L135
-
144
Burnham E, Brown L AS, Eaton S et al..
Prolonged glutathione deficiency and increased total protein concentrations in the epithelial lining fluid of chronic alcoholics [abstract].
Am J Respir Crit Care Med.
2001;
163
A816
-
145
Baughman R P, Roselle G A.
Surfactant deficiency with decreased opsonic activity in a guinea pig model of alcoholism.
Alcohol Clin Exp Res.
1987;
11
261-264
-
146
Greenberg S S, Zhao X, Hua L et al..
Ethanol inhibits lung clearance of Pseudomonas aeruginosa by a neutrophil and nitric oxide-dependent mechanism, in vivo.
Alcohol Clin Exp Res.
1999;
23
735-744
-
147
Omidvari K, Casey R, Nelson S et al..
Alveolar macrophage release of tumor necrosis factor-alpha in chronic alcoholics without liver disease.
Alcohol Clin Exp Res.
1998;
22
567-572
-
148
Looney M R, Gropper M A, Matthay M A.
Transfusion-related acute lung injury: a review.
Chest.
2004;
126
249-258
-
149
Kopko P M, Marshall C S, MacKenzie M R et al..
Transfusion-related acute lung injury: report of a clinical look-back investigation.
JAMA.
2002;
287
1968-1971
-
150
Silliman C C, Boshkov L K, Mehdizadehkashi Z et al..
Transfusion-related acute lung injury: epidemiology and a prospective analysis of etiologic factors.
Blood.
2003;
101
454-462
-
151
Popovsky M A, Moore S B.
Diagnostic and pathogenetic considerations in transfusion-related acute lung injury.
Transfusion.
1985;
25
573-577
-
152
Kopko P M, Holland P V.
Transfusion-related acute lung injury.
Br J Haematol.
1999;
105
322-329
-
153
Silliman C C, Paterson A J, Dickey W O et al..
The association of biologically active lipids with the development of transfusion-related acute lung injury: a retrospective study.
Transfusion.
1997;
37
719-726
-
154
Zallen G, Offner P J, Moore E E et al..
Age of transfused blood is an independent risk factor for postinjury multiple organ failure.
Am J Surg.
1999;
178
570-572
-
155
Purdy F R, Tweeddale M G, Merrick P M.
Association of mortality with age of blood transfused in septic ICU patients.
Can J Anaesth.
1997;
44
1256-1261
-
156
Dobbs L G, Gonzalez R, Matthay M A et al..
Highly water-permeable type I alveolar epithelial cells confer high water permeability between the airspace and vasculature in rat lung.
Proc Natl Acad Sci USA.
1998;
95
2991-2996
-
157
Perkins G D, McAuley D F, Thickett D R et al..
The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial.
Am J Respir Crit Care Med.
2006;
173
281-287
-
158
Folkesson H G, Matthay M A, Westrom B R et al..
Alveolar epithelial clearance of protein.
J Appl Physiol.
1996;
80
1431-1445
-
159
Kim C F, Jackson E L, Woolfenden A E et al..
Identification of bronchioalveolar stem cells in normal lung and lung cancer.
Cell.
2005;
121
823-835
-
160
Ware L B, Matthay M A.
Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation and repair.
Am J Physiol Lung Cell Mol Physiol.
2002;
282
L924-L40
-
161
Atabai K, Ishigaki M, Geiser T, Ueki I, Matthay M A, Ware L B.
Keratinocyte growth factor can enhance alveolar epithelial repair by nonmitogenic mechanisms.
Am J Physiol: Lung Cell Mol Physiol.
2002;
283
L163-L169
-
162
Rafii S, Lyden D.
Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration.
Nat Med.
2003;
9
702-712
-
163
Burnham E L, Taylor W R, Quyyumi A A et al..
Increased circulating endothelial progenitor cells are associated with survival in acute lung injury.
Am J Respir Crit Care Med.
2005;
172
854-860
Lorraine B WareM.D.
Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, T1218 MCN
1161 21st Ave. S., Nashville, TN 37232-2650
Email: lorraine.ware@vanderbilt.edu