RSS-Feed abonnieren
DOI: 10.1055/s-2006-949635
Conformationally Locked Carbocyclic Nucleosides: Synthesis of the 1-Methyl-6-oxabicyclo[3.1.0]hexane Scaffold
Publikationsverlauf
Publikationsdatum:
24. August 2006 (online)
Abstract
This paper describes the racemic and stereoselective synthesis of novel conformationally locked 3′-methyl-2′,3′-oxirane-fused carbocyclic nucleosides (nucleosides numbering). The key step is the direct coupling of an alcohol bearing the 1-methyl-6-oxabicyclo[3.1.0]hexane scaffold with diversely substituted purine nucleobases under Mitsunobu reaction conditions providing only the N9 target molecules.
Key words
carbocyclic nucleosides - conformationally locked nucleosides - Mitsunobu reaction - stereoselective synthesis - lipase regioselectivity
-
1a
Marquez VE. In Advances in Antiviral Drug Design Vol 2:De Clercq E. JAI Press Inc.; Greenwich, CT: 1996. p.89-146 -
1b
Carbohydrate Mimics: Concepts and Methods
Chapleur Y. Wiley-VCH; Weinheim: 1998. -
1c
Recent Advances in Nucleosides: Chemistry and Chemotherapy
Chu CK. Elsevier Science; Amsterdam: 2002. -
2a
Agrofolio LA.Challaud SR. Acyclic, Carbocyclic and l-Nucleosides Kluwer Academic Publishers; Dordrecht, Boston, London: 1998. - Recent reviews:
-
2b
Crimmins MT. Tetrahedron 1998, 54: 9229 -
2c
Ferrero M.Gotor V. Chem. Rev. 2000, 100: 4319 -
2d
Rodriguez JB.Comin MJ. Mini-Rev. Med. Chem. 2003, 3: 95 -
3a
Herdewijn P.De Clercq E.Balzarini J.Vanderhaeghe H. J. Med. Chem. 1985, 28: 550 -
3b
Marquez VE.Lim M. Med. Res. Rev. 1986, 6: 1 -
3c
Roberts S.Biggadike K.Borthwick AD.Kirk B. In Topics in Medicinal ChemistryLeeming PR. Royal Society of Chemistry; London: 1988. -
3d
Saunders J.Cameron JM. Med. Res. Rev. 1995, 15: 497 - For selected recent syntheses and references cited therein, see:
-
4a
Caamaño O.Gomez G.Fernández F.Garcia MD.Garcia-Mera X.De Clercq E. Synthesis 2004, 2855 -
4b
Takagi C.Sukeda M.Kim H.-S.Wataya Y.Yabe S.Kitade Y.Matsuda A.Shuto S. Org. Biomol. Chem. 2005, 3: 1245 -
4c
Yang M.Schneller SW. Bioorg. Med. Chem. 2005, 13: 877 -
4d
Santaniello E.Ciuffreda P.Alessandrini L. Synthesis 2005, 509 -
4e
Cho JH.Bernard DL.Sidwell RW.Kern ER.Chu CK. J. Med. Chem. 2006, 49: 1140 -
4f
Yang M.Zhou J.Schneller SW. Tetrahedron 2006, 62: 1295 -
4g
Agrofoglio LA. Curr. Org. Chem. 2006, 10: 333 - For selected recent syntheses and references cited therein, see:
-
5a
Moon HR.Lee HJ.Kim KR.Lee KM.Lee SK.Kim HO.Chun MW.Jeong LS. Bioorg. Med. Chem. 2004, 14: 5641 -
5b
Kim JW.Choi BG.Hong JH. Bull. Korean Chem. Soc. 2004, 25: 1812 -
5c
Zhu X.-F.Nydegger F.Gossauer A. Helv. Chim. Acta 2004, 87: 2245 -
5d
Gonzalez-Moa MJ.Besada P.Teijeira M.Teran C.Uriate E. Synthesis 2004, 543 -
5e
Quadrelli P.Scrocchi R.Caramella P.Rescifina A.Piperno A. Tetrahedron 2004, 60: 3643 -
5f
Yang Y.-Y.Meng W.-D.Qing F.-L. Org. Lett. 2004, 6: 4257 -
5g
Hegedus LS.Cross J. J. Org. Chem. 2004, 69: 8492 -
5h
Wang J.Jin Y.Rapp KL.Bennett M.Schinazi RF.Chu CK. J. Med. Chem. 2005, 48: 3736 -
5i
Meillon J.-C.Griffe L.Storer R.Gosselin G. Nucleosides, Nucleotides Nucleic Acids 2005, 24: 695 -
5j
García MD.Caamaño G.Fernández F.Lopez C.De Clercq E. Synthesis 2005, 925 -
5k
Lee JA.Moon HR.Kim HO.Kim KR.Lee KM.Kim BT.Hwang KJ.Chun MW.Jacobson KA.Jeong LS. J. Org. Chem. 2005, 70: 5006 -
5l
Roy A.Schneller SW.Keith KA.Hartline CB.Kern ER. Bioorg. Med. Chem. 2005, 13: 4443 -
5m
Jin YL.Hong JH. Bull. Korean Chem. Soc. 2005, 26: 1366 -
5n
Oh CH.Hong JH. Bull. Korean Chem. Soc. 2005, 26: 1520 -
5o
Kim A.Hong JH. Bull. Korean Chem. Soc. 2005, 26: 1767 -
5p
Jiang MX.-W.Jin B.Gage JL.Priour A.Savela G.Miller MJ. J. Org. Chem. 2006, 71: 4164 -
5q
Ludek OR.Krämer T.Balzarini J.Meier C. Synthesis 2006, 1313 -
5r
García MD.Caamaño O.Fernández F.Abeijon P.Blanco JM. Synthesis 2006, 73 -
5s
Gosselin G.Griffe L.Meillon J.-C.Storer R. Tetrahedron 2006, 62: 906 - For selected recent syntheses and references cited therein, see:
-
6a
Ishikura M.Matsumoto K.Hasunuma M.Katagiri N. Heterocycles 2003, 60: 2737 -
6b
Choi Y.George C.Comin MJ.Barchi JJ.Kim HS.Jacobson KA.Balzarini J.Mitsuya H.Boyer PL.Hughes SH.Marquez VE. J. Med. Chem. 2003, 46: 3292 -
6c
Choi Y.Moon HR.Yoshimura Y.Marquez VE. Nucleosides, Nucleotides Nucleic Acids 2003, 22: 547 -
6d
Comin MJ.Rodriguez JB.Russ P.Marquez VE. Tetrahedron 2003, 59: 295 -
6e
Kim KW.Hong JH. Bull. Korean Chem. Soc. 2004, 25: 668 -
6f
Ishikura M.Matsumoto K.Murakami A. Heterocycles 2004, 64: 241 -
6g
Paoli L.Piccini S.Rodriguez M.Sega A. J. Org. Chem. 2004, 69: 2881 -
6h
Moon HR.Kim KR.Kim BT.Hwang KJ.Chun MW.Jeong LS. Nucleosides, Nucleotides Nucleic Acids 2005, 24: 709 -
6i
Tchilibon S.Joshi BV.Kim S.-K.Duong HT.Gao Z.-G.Jacobson KA. J. Med. Chem. 2005, 48: 1745 -
6j
Joschi BV.Moon HR.Fettinger JC.Marquez VE.Jacobson KA. J. Org. Chem. 2005, 70: 439 -
6k
Comin MJ.Parrish DA.Deschamps JR.Marquez VE. Org. Lett. 2006, 8: 705 - 7
Audran G.Acherar S.Monti H. Eur. J. Org. Chem. 2003, 92 -
9a
Mitsunobu O. Synthesis 1981, 1 -
9b
Jenny TF.Horlacher J.Previsani N.Benner SA. Helv. Chim. Acta 1992, 75: 1944 -
9c Review:
Hughes DL. Org. Prep. Proced. Int. 1996, 28: 127 - 10
Greene TW.Wuts PGM. Protective Groups in Organic Synthesis 3rd ed.: John Wiley and Sons, Inc.; New York: 1999. p.150 - 11
Corey EJ.Venkateswarlu A. J. Am. Chem. Soc. 1972, 94: 6190 -
12a
Sharpless KB.Michaelson RC. J. Org. Chem. 1973, 38: 6136 -
12b
Sharpless KB.Teranichi AY.Backväll J.-E. J. Am. Chem. Soc. 1977, 99: 3120
References and Notes
Nucleoside numbering.
13
Characterization of Selected New Compounds.
Compound (±)-7: IR (neat): ν = 3321, 1752, 1148, 1053 cm-1. 1H NMR (400 MHz, CDCl3): δ = 4.27 (t, J = 7.8 Hz, 1 H), 3.95 (ABX, J = 11.4, 5.4, 4.9 Hz, 2 H), 3.28 (s, 1 H), 2.79 (br s, OH), 2.38 (dt, J = 9.0, 4.7 Hz, 1 H), 1.98 (s, 3 H), 1.76 (dd, J = 13.4, 7.8 Hz, 1 H), 1.48 (dt, J = 13.4, 8.3 Hz, 1 H), 1.32 (s, 3 H). 13C NMR (400 MHz, CDCl3): δ = 170.7 (C), 72.3 (CH), 65.3 (CH), 65.0 (CH2), 64.0 (C), 41.4 (CH), 33.1 (CH2), 20.7 (CH3), 15.5 (CH3). Anal. Calcd for C9H14O4: C, 58.05; H, 7.58. Found: C, 57.91; H, 7.61.
Compound (±)-1a: white solid; mp 150 °C (dec.). IR (KBr): ν = 3291, 3115, 1667, 1609 cm-1. 1H NMR (400 MHz, CDCl3): δ = 8.42 (s, 1 H), 7.95 (s, 1 H), 6.14 (br s, 1 H), 5.00 (dd, J = 9.5, 2.9 Hz, 1 H), 3.81 and 3.72 (ABX, J = 10.9, 4.5, 3.5 Hz, 2 H), 3.56 (s, 1 H), 3.01 (m, 1 H), 2.61 (dt, J = 14.5, 9.5 Hz, 1 H), 2.49-2.42 (m, 1 H), 2.25 (dt, J = 14.5, 2.9 Hz, 1 H), 1.62 (s, 3 H), 0.93-0.87 (m, 2 H), 0.65-0.59 (m, 2 H). 13C NMR (400 MHz, CDCl3): δ = 155.9 (C), 152.9 (CH), 148.5 (C), 139.6 (CH), 120.0 (C), 69.3 (C), 66.2 (CH), 62.8 (CH2), 55.6 (CH), 44.5 (CH), 34.4 (CH2), 23.7 (CH), 15.4 (CH3), 2 × 7.4 (CH2). Anal. Calcd for C15H19N5O2: C, 59.79; H, 6.36; N, 23.24. Found: C, 59.98; H, 6.33; N, 23.04.
Compound (±)-1b: white solid; mp 170 °C (dec.). IR (KBr): ν = 3278, 3107, 1678, 1600 cm-1. 1H NMR (500 MHz, DMSO-d
6): δ = 8.19 (s, 1 H), 8.13 (s, 1 H), 7.21 (br s, 2 H), 4.91 (d, J = 7.2 Hz, 1 H), 4.77 (t, J = 4.5 Hz, 1 H), 3.79 (s, 1 H), 3.55 (m, 1 H), 3.38 (m, 1 H), 2.27-2.18 (m, 2 H), 1.88 (d, J = 12.6 Hz, 1 H), 1.49 (s, 3 H). 13C NMR (400 MHz, DMSO-d
6): δ = 156.2 (C), 152.5 (CH), 149.6 (C), 139.2 (CH), 118.9 (C), 68.1 (C), 64.1 (CH), 61.6 (CH2), 54.2 (CH), 44.5 (CH), 33.6 (CH2), 15.5 (CH3). Anal. Calcd for C12H15N5O2: C, 55.16; H, 5.79; N, 26.80. Found: C, 54.85; H, 5.84; N, 26.59.
Compound (±)-1c: white solid; mp 190 °C (dec.). IR (KBr): ν = 3305, 3172, 1676, 1615 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 7.76 (s, 1 H), 7.28 (br d, J = 3.6 Hz, 1 H), 5.86 (br s, 2 H), 4.78 (t, 4.9 Hz, 1 H), 4.72 (d, J = 7.2 Hz, 1 H), 3.70 (s, 1 H), 3.49 (dt, J = 10.8, 4.9 Hz, 1 H), 3.30 (dt, J = 10.8, 4.9 Hz, 1 H), 3.02 (br s, 1 H), 2.27-2.07 (m, 2 H), 1.86 (d, J = 14.0 Hz, 1 H), 1.47 (s, 3 H), 0.69-0.61 (m, 2 H), 0.60-0.53 (m, 2 H). 13C NMR (400 MHz, DMSO-d
6): δ = 160.3 (C), 156.1 (C), 151.5 (C), 135.3 (CH), 113.6 (C), 68.0 (C), 64.2 (CH), 61.7 (CH2), 53.6 (CH), 44.6 (CH), 33.3 (CH2), 24.0 (CH), 15.6 (CH3), 2 × 6.6 (CH2). Anal. Calcd for C15H20N6O2: C, 56.95; H, 6.37; N, 26.56. Found: C, 57.23; H, 6.39; N, 26.35.
General Procedure.
Diisopropyl azodicarboxylate (DIAD, 0.72 mL, 3.6 mmol, 1.5 equiv) was added dropwise to a solution of PPh3 (950 mg, 3.6 mmol, 1.5 equiv) in fresly distilled THF (50 mL) kept under Ar atmosphere at 0 °C. The mixture was stirred for 30 min and then the purine base was added (3.6 mmol, 1.5 equiv). The mixture was stirred for an additional 30 min and then a solution of epoxide 7 (450 mg, 2.4 mmol, 1 equiv) in dry THF (5 mL) was added slowly. The cooling bath was removed and the mixture allowed to warm to r.t. The mixture was stirred for 12 h at r.t.(chloropurine) or 12 h at r.t. then 4 h at 40 °C (adenine, 2-aminochloropurine). The solvent was removed under reduced pressure and the residue was chromatographed on a silica gel column (gradients hexane-EtOAc as eluent). Compounds 8 (66% yield) and 9 (56% yield) were obtained pure as white solids, but 10 was contaminated with inseparable triphenylphosphine oxide.
Triphenylphosphine oxide present with 10 was conveniently eliminated during this ammonia deprotective step by triturating the insoluble alcohol 12 with CH2Cl2 before aminocyclopropanation. Using this protocol, pure 12 was obtained in 53% overall yield from 7.