RSS-Feed abonnieren
DOI: 10.1055/s-2006-949653
Total Synthesis of (-)-Chokol A by an Asymmetric Domino Michael Addition-Dieckmann Cyclization [1]
Publikationsverlauf
Publikationsdatum:
24. August 2006 (online)
Abstract
A convergent and asymmetric total synthesis of (-)-chokol A was accomplished in six steps starting from the α,β-unsaturated ester (E)-9 in an overall yield of 27% with an enantiomeric excess of 95%. The key step of this synthesis is the asymmetric tandem conjugate addition-Dieckmann cyclization of the higher-order cuprate 8 derived from vinyl bromide 7 with the α,β-unsaturated ester (E)-9.
Key words
antifungal agents - asymmetric synthesis - Michael addition - tandem reaction - total synthesis
-
1a Stereoselective Synthesis of Steroids and Related Compounds, IX. For part VIII, see:
Groth U.Kalogerakis A.Richter N. Synlett 2006, 905 -
1b Lanthanides in Organic Synthesis, part VI. For part V, see:
Groth U.Kesenheimer C.Neidhöfer J. Synlett 2006, 12: 1859 - 2
Koshino H.Yoshihara T.Togiya S.Terada S.Tsukada S.Okuno M.Noguchi A.Sakamura S.Ichihara A. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 1989, 31: 244 - 3
Yoshihara T.Togiya S.Koshino H.Sakamura S.Shimanuki T.Sato T.Tajimi A. Tetrahedron Lett. 1985, 26: 5551 - 4
Sakamura S. In Biologically Active Natural Products - Potential Use in AgricultureCulter HG. ACS Symposium Series, Vol. 380, Oxford University Press; New York: 1988. -
5a
Oppolzer W.Cunningham AF. Tetrahedron Lett. 1986, 27: 5467 -
5b
Lawler DM.Simpkins NS. Tetrahedron Lett. 1988, 29: 1207 -
5c
Tanimori S.Ueda T.Nakayama M. Biosci. Biotechnol. Biochem. 1994, 58: 1174 -
5d
Groth U.Halfbrodt W.Köhler T.Kreye P. Liebigs Ann. Chem. 1994, 9: 885 -
5e
Deloux L.Srebnik M. Tetrahedron Lett. 1996, 37: 2735 -
6a
Mash EA. J. Org. Chem. 1987, 52: 4142 -
6b
Suzuki T.Sato E.Matsuda Y.Tada H.Koizumi S.Unno K.Kametami T. J. Chem. Soc., Chem. Commun. 1988, 1531 -
6c
Suzuki T.Tada H.Unno K. J. Chem. Soc., Perkins Trans. 1 1992, 2017 -
6d
Urban E.Knühl G.Helmchen G. Tetrahedron 1995, 51: 13031 -
6e For the enantio-selective synthesis of (-)-chokol G, see:
Kanada RM.Tanaguchi T.Ogasawara K. Chem. Commun. 1998, 1755 - 7
Groth U.Halfbrodt W.Kalogerakis A.Köhler T.Kreye P. Synlett 2004, 291 - For recent reviews on domino reactions, see:
-
8a
Tietze LF. J. Heterocycl. Chem. 1990, 27: 47 -
8b
Tietze LF.Beifuss U. Angew. Chem., Int. Ed. Engl. 1993, 32: 131 ; Angew. Chem. 1993, 105, 137 -
8c
Tietze LF.Bachmann J.Wichmann J.Burkhardt O. Synthesis 1994, 1185 -
8d
Tietze LF. Chem. Ind. (London, U.K.) 1995, 453 -
8e
Tietze LF. Chem. Rev. 1996, 96: 115 -
8f
Tietze LF.Modi A. Med. Res. Rev. 2000, 20: 304 -
8g
Tietze LF.Haunert F. Domino Reactions in Organic Synthesis. An Approach to Efficiency, Elegance, Ecological Benefit, Economic Advantage and Preservation of our Resources in Chemical Transformations, In Stimulating Concepts in ChemistryShibasaki M.Stoddart JF.Vögtle F. Wiley-VCH; Weinheim: 2000. p.39-64 -
8h
Tietze LF.Rackelmann N. Pure Appl. Chem. 2004, 76: 1967 -
8i
Tietze LF.Brasche G.Gericke K. Domino Reactions in Organic Synthesis Wiley-VCH; Weinheim: 2006. - 9 For the synthesis of 2-bromo-5-hydroxypent-2-ene 7, see also:
Lawler DM.Simpkins NS. Tetrahedron Lett. 1988, 29: 1207 - 10
Gewald K.Jänsch HJ. J. Prakt. Chem. 1973, 4: 779 -
12a
Parish EJ.Mody NV.Hedin PA.Miles DH. J. Org. Chem. 1974, 39: 1592 -
12b
Huang B.-S.Parish EJ.Miles DH. J. Org. Chem. 1974, 39: 2647 -
12c For a review article about this topic, see:
Krapcho AP. Synthesis 1982, 805 - 13
Alcarez C.Groth U. Angew. Chem., Int. Ed. Engl. 1997, 36: 2480
References and Notes
(1
S
,2
S
,1′
R
,2′
S
,5′
R
)-2-[1-(3-Benzyloxypropyl)vinyl]-5-oxocyclopentanecarboxylic Acid [5′-Methyl-2′-(1-methyl-1-phenylethyl)]cyclohexyl Ester (
10a)
To a solution of 2.55 g (10.0 mmol) 2-bromopentenylbenzyl ether (7) in 20 mL of abs. Et2O 10.0 mL (20.0 mmol, 2 M solution in Et2O) of t-BuLi was slowly added at -90 °C and stirred then at this temperature for 90 min. The resulting organolithium compound was then added at -80 °C via canula to a suspension of 0.45 g (5.0 mmol) copper(I) cyanide in 10 mL Et2O and stirred then for 2 h until the temperature reached -30 °C and the suspension turned into a bright-green solution. After cooling the solution again to
-80 °C 0.64 mL (5.0 mmol) BF3·OEt2 were added by syringe and stirred for 15 min, whereupon the solution was cooled to -115 °C by an EtOH-dry ice bath. After reaching this temperature a degassed solution of 0.37 g (1.0 mmol) of the chiral ester 9 in 10 mL Et2O was added (very) slowly to the solution of the higher order cuprate 8 and the resulting reaction solution was then stirred for 12 h under warming to r.t. For the work-up 30 mL of a sat. NH4Cl solution were added to the black suspension, stirred for 2-3 min and then filtered over Celite®. After phase separation the aqueous phase was extracted 3 times with 25 mL portions of Et2O. The combined organic phases were dried over MgSO4 and concentrated with a rotary evaporator at 30 °C/13 mbar. The resulting residue was then purified via column chromatography over 200 g silica gel with PE-Et2O = 2:1 as eluent, which gave 0.48 g (0.93 mmol, 93% yield) of the compound 10a (Figure
[2]
). The diastereomeric excess was determined to be >95% by 13C NMR spectroscopy. R
f
= 0.35 (PE-Et2O = 2:1). 1H NMR (200 MHz, CDCl3): δ = 0.85 (d, 3 H, -CH3, J = 6.3 Hz), 1.18 (s, 3 H, -CH3), 1.26 (s, 3 H, -CH3), 1.34-2.39 (m, 18 H, H2-H4, H1′-H6′ and H2′′-H3′′), 2.86-2.88 (m, 1 H, H1), 3.5 (t, 2 H, H4′′, J = 6.2 Hz), 4.52 (s, 2 H, -CH2Ph), 4.76-4.83 (m, 2 H, C=CH2), 7.06-7.50 (m, 10 H, 2 × Ph). 13C NMR (50.3 MHz, CDCl3): δ = 21.71 (C5′-CH3), 26.29 [C2′-C(CH3)2Ph], 26.56 (C3′), 26.83 [C2′-C(CH3)2Ph], 26.90 (C3′′), 27.96 (C5′), 30.96 (C3), 31.25 (C2′), 34.48 (C4′), 38.09 (C4), 39.81 [C2′-C(CH3)2Ph], 41.22 (C2), 45.13 (C6′), 49.90 (C2′), 60.35 (C1), 69.66 (C4′′), 72.91 (OCH2Ph), 76.27 (C1′), 109.38 (C1′′=CH2), 124.90 (Cpara,Ph), 125.42 (Cortho,Ph), 127.48 (Cpara,Bn), 127.55 (Cortho,Bn), 127.92 (Cmeta,Ph), 128.30 (Cmeta,Bn), 138.42 (C1Bn), 148.38 (C1′′), 151.21 (C1Ph), 167.49 (-CO2R), 210.23 (C5). MS (EI, 70eV): m/z (%) = 516.4 (0.1) [M+], 302.2 (52.0) [M+ - C16H22], 119.1 (50.0) [Ph-C(CH3)2
+], 91.1 (100.0) [C7H7
+]. IR (film): 3020, 3005 (C=CH2), 1745 (C=O), 1710 (-CO2R), 1640 (C=C) cm-1. [a]D
20 +4.21 (c 1.13, CHCl3). Anal. Calcd for C34H44O4: C, 79.03; H, 8.58. Found: C, 78.90; H, 8.71.