RSS-Feed abonnieren
DOI: 10.1055/s-2006-950205
Enantioselective Alkynylation Reactions to Aldehydes: The Effects of Aromatic Substituents upon the Enantioselectivity
Publikationsverlauf
Publikationsdatum:
21. August 2006 (online)
Abstract
Asymmetric alkynylation reactions to linear alkyl and substituted aromatic aldehydes have been accomplished in good yields and with a range of selectivities. For aromatic aldehydes we observed that the selectivity of the alkynylation reaction appears to depend upon the substituents on the aromatic ring. Thus with electron-withdrawing substituents both the yield and enantioselectivities were good to excellent. In contrast to this, the presence of electron-donating groups provided excellent conversions; however, these were coupled with poor enantioselectivities.
Key words
asymmetric alkynylation reaction - aromatic aldehydes - N-methylephedrine - organozinc - substituent effects - citronellal
- 1
Mann A.Muller C.Tyrrell E. J. Chem. Soc., Perkin Trans. 1 1998, 1427 - 2
Nicholas KM. Acc. Chem. Res. 1987, 20: 207 - 3 Review:
Roxburgh CJ. Synthesis 1996, 3: 307 - 4
Tyrrell E.Millet J.Tesfa KH. Asymmetric Synthesis with Chemical and Biological Methods 9th International SFB Symposium, October 10-11, 2005, Aachen, Germany; Abstract 226 - 5
Schreiber SL.Klimas MT.Sammakia T. J. Am. Chem. Soc. 1987, 20: 207 - 6
Muehldorf AV.Guzman-Perez A.Kluge AF. Tetrahedron Lett. 1994, 35: 8755 - 7
Grove DD.Corte JR.Spencer RP.Pauly ME.Rath NP. J. Chem. Soc., Chem. Commun. 1994, 49 - Using asymmetric hydroboration techniques:
-
8a
Corey EJ.Helal CJ. Tetrahedron Lett. 1995, 36: 9153 -
8b
Parker KA.Ledeboer MW. J. Org. Chem. 1996, 61: 3214 -
8c Using transition-metal-catalysed hydrogenation, see:
Matsumura K.Hashiguchi S.Ikariya T.Noyori R. J. Am. Chem. Soc. 1997, 119: 8738 - 9
Lu G.Li Y.-M.Li X.-S.Chan ASC. Coord. Chem. Rev. 2005, 249: 1736 - 10
Katritzky AR.Meth-Cohn O.Rees CW. Comprehensive Organic Functional Group Transformations Vol. 1: Elsevier Sciences Ltd.; Amsterdam: 2005. 1.21. - 11
Pu L.Yu H.-B. Chem. Rev. 2001, 101: 757 - 12
Watts CC.Thoniyot P.Hirayama LC.Romano T.Singaram B. Tetrahedron: Asymmetry 2005, 16: 1829 -
13a
Frantz DE.Fassler R.Carreira EM. J. Am. Chem. Soc. 2000, 122: 1806 -
13b
Anand NK.Carreira EM. J. Am. Chem. Soc. 2001, 123: 9687 -
13c
Boyall D.Frantz DE.Carreira EM. Org. Lett. 2002, 4: 2605 -
14a
Lu G.Li X.Zhou Z.Chan WL.Chan ASC. Tetrahedron: Asymmetry 2001, 12: 2147 -
14b
Li Z.Upahhyay V.DeCamp AE.DiMichele L.Reider PJ. Synthesis 1999, 1453 -
15a
Pizzuti MG.Superchi S. Tetrahedron: Asymmetry 2005, 16: 2263 -
15b
Kang Y.-F.Wang R.Liu L.Da C S.Yan W.-J.Xu Z.-Q. Tetrahedron Lett. 2005, 46: 863 - 16
Tyrrell E.Tillett C. Tetrahedron Lett. 1998, 39: 9535 -
17a
Dale JA.Dull D.Mosher HS. J. Org. Chem. 1969, 34: 2543 -
17b
Dale JA.Mosher HS. J. Am. Chem. Soc. 1973, 95: 512
References
The results from these studies will be disseminated at a later date (although see ref. 4).
19All compounds provided satisfactory spectral data that were consistent with the assigned structures. For succinctness we have limited the experimental section to a representative example of salicylaldehyde derivatives, e.g. non-substituted, mono- and di-substituted and naphthyl derivatives. Optical rotation data and HPLC retention times are included for all relevant examples.