References
1
Wessjohann LA.
Ruijter E.
Garcia-Rivera D.
Brandt W.
Mol. Diversity
2005,
9:
171
2
Newman DJ.
Cragg GM.
Snader KM.
J. Nat. Prod.
2003,
66:
1022
3
Henkel T.
Brunne RM.
Mueller H.
Reichel F.
Angew. Chem. Int. Ed.
1999,
38:
643 ; Angew. Chem. 1999, 111, 688
4
Lee M.-L.
Schneider G.
J. Comb. Chem.
2001,
3:
284
5
Rouhi AM.
Chem. Eng. News
2003,
81 (41):
77
6
Fehler M.
Schmidt JM.
J. Chem. Inf. Comput. Sci.
2003,
43:
218
7
Wessjohann LA.
Ruijter E.
Top. Curr. Chem.
2005,
243:
137
8
Breinbauer R.
Vetter IR.
Waldmann H.
Angew. Chem. Int. Ed.
2002,
41:
2878 ; Angew. Chem. 2002, 114, 3002
9
Breinbauer R.
Manger M.
Scheck M.
Waldmann H.
Curr. Med. Chem.
2002,
9:
2129
10
Walsh CT.
Science
2004,
303:
1805
11
Wessjohann LA.
Ruijter E.
Mol. Diversity
2005,
9:
159
12
Wessjohann LA.
Curr. Opin. Chem. Biol.
2000,
4:
303
13
Ortholand JY.
Ganesan A.
Curr. Opin. Chem. Biol.
2004,
8:
271
14
Nielsen J.
Curr. Opin. Chem. Biol.
2003,
6:
297
15
Brohm D.
Metzger S.
Bhargava A.
Müller O.
Lieb F.
Waldmann H.
Angew. Chem. Int. Ed.
2002,
41:
307 ; Angew. Chem. 2002, 114, 319
16
Orru RVA.
de Greef M.
Synthesis
2003,
1471
17
Rose GD.
Gierasch L.
Smith JA.
Turns in Peptides and Proteins, In Advances in Protein Chemistry
Vol. 37:
Academic;
New York:
1985.
p.1
18 Gibson, C.; Sulyok, G.; Schmitt, J. S.; Dechantsreiter, M. A.; Haubner, R.; Hölzemann, G.; Goodman, S. L.; Kessler, H. From Proteins to Drugs: The RGD Story, The 8th Akabori Conference, Japanese-German Symposium on Peptide Science, Nagoya, Japan, 2000.
19
Giannis A.
Kolter T.
Angew. Chem., Int. Ed. Engl.
1993,
32:
1244 ; Angew. Chem. 1993, 105, 1303
20
Park C.
Burgess K.
J. Comb. Chem.
2001,
3:
257
21
McDonald M.
Aube J.
Curr. Org. Chem.
2001,
5:
417
22
Hanessian S.
McNaughton-Smith G.
Lombart HG.
Lubell WD.
Tetrahedron
1997,
53:
12789
23
Westermann B.
Diedrichs N.
Krelaus R.
Walter A.
Gedrath I.
Tetrahedron Lett.
2004,
45:
5983
24
Kruijtzer JWA.
Liskamp RMJ.
Tetrahedron Lett.
1995,
36:
6969
25
Hebach C.
Kazmaier U.
Chem. Commun.
2003,
596
26
Nubbemeyer U.
Top. Curr. Chem.
2001,
216:
125
27
Kerr JS.
Mousa SA.
Slee AM.
Drug News Perspect.
2001,
14:
143
28
van Loevezijn A.
van Maarseveen JH.
Stegman K.
Visser GM.
Koomen G.-J.
Tetrahedron Lett.
1998,
39:
4737
29
Zuckermann RN.
Martin EJ.
Spellmeyer DC.
Stauber GB.
Shoemaker KR.
Kerr JM.
Figliozzi GM.
Goff DA.
Siani MA.
Simon RJ.
Banville SC.
Brown EG.
Wang L.
Richter LS.
Moos WH.
J. Med. Chem.
1994,
37:
2678
30
Horwell DC.
Trends Biotechnol.
1995,
13:
132
31
Burger K.
Böttcher C.
Radics R.
Henning L.
Tetrahedron Lett.
2001,
42:
3061
32 Special issue: Peptide Libraries and Peptide Drugs, Mol. Diversity 2004, 8, 57-174
33
Gournelis DC.
Laskaris GG.
Verpoorte R.
Nat. Prod. Rep.
1997,
14:
75 ; and ref. 74c
34
Morel AF.
Machado ECS.
Moreira JJ.
Menezes AS.
Mostardeiro MA.
Wessjohann LA.
Phytochem.
1998,
47:
125
35
Morel AF.
Machado EC.
Wessjohann LA.
Phytochem.
1995,
39:
431
36
Lin HY.
Chen CH.
Liu K.
Lee SS.
Helv. Chim. Acta
2003,
86:
127
37
Giacomelli SR.
Maldaner G.
Gonzaga WA.
Garcia CM.
da Silva UF.
Dalcol II.
Morel AF.
Phytochemistry
2004,
65:
933
38
Lewis JR.
Nat. Prod. Rep.
1998,
15:
417
39
Kim YA.
Shin HN.
Park MS.
Cho SH.
Han SY.
Tetrahedron Lett.
2003,
44:
2557
40
Mostardeiro MA.
Ethur EM.
Morel AF.
Wessjohann LA.
J. Prakt. Chem.
1997,
339:
467
41
Temal-Laib T.
Chastanet J.
Zhu JP.
J. Am. Chem. Soc.
2002,
124:
583
42
Bowers MM.
Carroll P.
Joullié MM.
J. Chem. Soc., Perkin Trans. 1
1989,
857
43
Leonard MS.
Carroll PJ.
Joullié MM.
J. Org. Chem.
2004,
69:
2526
44
Flanagan DM.
Joullié MM.
Synth. Commun.
1990,
20:
459
45
Owens TD.
Araldi G.-L.
Nutt RF.
Semple JE.
Tetrahedron Lett.
2001,
42:
6271
46
Laib T.
Zhu J.
Tetrahedron Lett.
1999,
40:
83
47
Cristau P.
Vors J.-P.
Zhu J.
Tetrahedron Lett.
2003,
44:
5575
48 An unusual C-C-bond-forming aldol macrocyclization was also attempted, see: Robotti KM.
Ph.D. Dissertation
University of Michigan;
USA:
1980.
49
Frappier F.
Rocchiccioli F.
Jarreau F.-X.
Pais M.
Tetrahedron
1978,
34:
2911
50
Rocchiccioli F.
Jarreau F.-X.
Pais M.
Tetrahedron
1978,
34:
2917
51
Lagarias JC.
Houghten RA.
Rapoport H.
J. Am. Chem. Soc.
1978,
100:
8202
52
Nutt RF.
Chen KM.
Joullié MM.
J. Org. Chem.
1984,
1013
53
Heffner RJ.
Joullié MM.
J. Am. Chem. Soc.
1992,
114:
10181
54
Schmidt U.
Weinbrenner S.
J. Chem. Soc., Chem. Commun.
1994,
1003 ; and references cited therein
55
Schmidt U.
Lieberknecht A.
Griesser H.
Talbiersky J.
J. Org. Chem.
1982,
47:
3261
56
Schmidt U.
Lieberknecht A.
Griesser H.
Häusler J.
Angew. Chem., Int. Ed. Engl.
1981,
20:
281
57
Joullié MM.
Nutt RF. In Alkaloids: Chemical and Biological Perspectives
Vol. 3:
Pelletier SW.
Wiley;
New York:
1985.
p.113
58
Schmidt U.
Prantz E.
Angew. Chem., Int. Ed. Engl.
1977,
16:
328
59
Schmidt U.
Ohler E.
Angew. Chem., Int. Ed.. Engl.
1977,
16:
327
60
Wamhoff EW.
The Alkaloids
1971,
1:
444
61
Krejcarek GE.
Dominy BW.
Lawton RG.
J. Chem. Soc., Chem. Commun.
1968,
1450
62
Boisnard S.
Zhu J.
Tetrahedron Lett.
2002,
43:
2577 ; and refs 74a,b
63
Janvier P.
Bois-Choussy M.
Bienaymé H.
Zhu J.
Angew. Chem. Int. Ed.
2003,
42:
811 ; Angew. Chem. 2003, 115, 835
64
Gámez-Montaño R.
González-Zamora E.
Potier P.
Zhu J.
Tetrahedron
2002,
58:
6351
65
Cristau P.
Vors J.-P.
Zhu J.
Org. Lett.
2001,
3:
4079
66a
Dömling A.
Chem. Rev.
2006,
106:
17
66b
Dömling A.
Ugi I.
Angew. Chem. Int. Ed.
2000,
39:
3168 ; Angew. Chem. 2000, 112, 3300
67 As an example, a derivative with R4 = Ph and R3 = H decomposes within one hour, even when kept at -20 °C and stored under an argon atmosphere (see ref. 71). A similar frame-shifted approach to form the macrocyclic ring via Ugi-4CR to form moiety I resulted in dimeric structures, possibly 28-membered rings (see ref. 11).
68
Beck B.
Larbig G.
Magnin-Lachaux M.
Picard A.
Herdtweck E.
Dömling A.
Org. Lett.
2003,
5:
1047
69 Rodrigues, O. E. D.; Braga, A. L.; Wessjohann, L. A. manuscript submitted.
70 Orru, R. V. A.; de Greef, M.; Abeln, S.; Belkasmi, K.; Dömling, A.; Wessjohann, L. A. A Short and Flexible Route to Cyclopeptide Alkaloids, The 12th European Symposium on Organic Chemistry (ESOC 12), Groningen, The Netherlands, 2001.
71a
Abeln S.
Master Thesis
Vrije Universiteit Amsterdam;
The Netherlands:
2000.
72 Later, the Zhu group in their conventional SNAr approach could prove that the retro-Michael reaction is, indeed, favored (see ref. 41). In an early work, Schmidt could show for his related system that sulfide formation occurs by this approach, but ether formation not (see refs. 58, 59).
73 Broad signals in the 1H NMR spectrum and the presence of additional signals in the 13C NMR spectrum suggest coexisting conformers. Spectral data refer to major isomer.
Some recent relevant references (added in proof):
74a
Cristau P.
Vors J.-P.
Zhu J.
QSAR & Comb. Sci.
2006,
25:
519
74b
Cristau P.
Temol-Laib T.
Bois-Choussy M.
Martin M.-T.
Vors J.-P.
Zhu J.
Chem. Eur. J.
2005,
11:
2668
74c
Tan N.-H.
Zhou J.
Chem. Rev.
2006,
106:
840