RSS-Feed abonnieren
DOI: 10.1055/s-2006-950335
Rapid Combinatorial Access to Macrocyclic Ansapeptoids and Ansapeptides with Natural-Product-like Core Structures
Publikationsverlauf
Publikationsdatum:
02. November 2006 (online)
Abstract
14-Membered ansa-cyclopeptide alkaloids are among the most abundant natural macrocycles and thus valuable templates for diversity-oriented synthesis with biological relevance. A rapid synthesis of the core structure is conceivable by a combination of an Ugi four-component reaction with bifunctional building blocks to form the dipeptoid part, followed by a suitable macrocyclization reaction. The latter step is crucial, and an uncommon macroetherification gave the best results. The use of ammonium salts allows direct access to peptides instead of peptoids. Depending on the substitution pattern, some cyclopeptoids show planar chirality despite free rotation of the phenylene group.
Key words
alkaloids - cyclopeptides - macrocycles - ansa compounds - multicomponent reaction - planar chirality - natural product analogues
- 1
Wessjohann LA.Ruijter E.Garcia-Rivera D.Brandt W. Mol. Diversity 2005, 9: 171 - 2
Newman DJ.Cragg GM.Snader KM. J. Nat. Prod. 2003, 66: 1022 - 3
Henkel T.Brunne RM.Mueller H.Reichel F. Angew. Chem. Int. Ed. 1999, 38: 643 ; Angew. Chem. 1999, 111, 688 - 4
Lee M.-L.Schneider G. J. Comb. Chem. 2001, 3: 284 - 5
Rouhi AM. Chem. Eng. News 2003, 81 (41): 77 - 6
Fehler M.Schmidt JM. J. Chem. Inf. Comput. Sci. 2003, 43: 218 - 7
Wessjohann LA.Ruijter E. Top. Curr. Chem. 2005, 243: 137 - 8
Breinbauer R.Vetter IR.Waldmann H. Angew. Chem. Int. Ed. 2002, 41: 2878 ; Angew. Chem. 2002, 114, 3002 - 9
Breinbauer R.Manger M.Scheck M.Waldmann H. Curr. Med. Chem. 2002, 9: 2129 - 10
Walsh CT. Science 2004, 303: 1805 - 11
Wessjohann LA.Ruijter E. Mol. Diversity 2005, 9: 159 - 12
Wessjohann LA. Curr. Opin. Chem. Biol. 2000, 4: 303 - 13
Ortholand JY.Ganesan A. Curr. Opin. Chem. Biol. 2004, 8: 271 - 14
Nielsen J. Curr. Opin. Chem. Biol. 2003, 6: 297 - 15
Brohm D.Metzger S.Bhargava A.Müller O.Lieb F.Waldmann H. Angew. Chem. Int. Ed. 2002, 41: 307 ; Angew. Chem. 2002, 114, 319 - 16
Orru RVA.de Greef M. Synthesis 2003, 1471 - 17
Rose GD.Gierasch L.Smith JA. Turns in Peptides and Proteins, In Advances in Protein Chemistry Vol. 37: Academic; New York: 1985. p.1 - 19
Giannis A.Kolter T. Angew. Chem., Int. Ed. Engl. 1993, 32: 1244 ; Angew. Chem. 1993, 105, 1303 - 20
Park C.Burgess K. J. Comb. Chem. 2001, 3: 257 - 21
McDonald M.Aube J. Curr. Org. Chem. 2001, 5: 417 - 22
Hanessian S.McNaughton-Smith G.Lombart HG.Lubell WD. Tetrahedron 1997, 53: 12789 - 23
Westermann B.Diedrichs N.Krelaus R.Walter A.Gedrath I. Tetrahedron Lett. 2004, 45: 5983 - 24
Kruijtzer JWA.Liskamp RMJ. Tetrahedron Lett. 1995, 36: 6969 - 25
Hebach C.Kazmaier U. Chem. Commun. 2003, 596 - 26
Nubbemeyer U. Top. Curr. Chem. 2001, 216: 125 - 27
Kerr JS.Mousa SA.Slee AM. Drug News Perspect. 2001, 14: 143 - 28
van Loevezijn A.van Maarseveen JH.Stegman K.Visser GM.Koomen G.-J. Tetrahedron Lett. 1998, 39: 4737 - 29
Zuckermann RN.Martin EJ.Spellmeyer DC.Stauber GB.Shoemaker KR.Kerr JM.Figliozzi GM.Goff DA.Siani MA.Simon RJ.Banville SC.Brown EG.Wang L.Richter LS.Moos WH. J. Med. Chem. 1994, 37: 2678 - 30
Horwell DC. Trends Biotechnol. 1995, 13: 132 - 31
Burger K.Böttcher C.Radics R.Henning L. Tetrahedron Lett. 2001, 42: 3061 - 33
Gournelis DC.Laskaris GG.Verpoorte R. Nat. Prod. Rep. 1997, 14: 75 ; and ref. 74c - 34
Morel AF.Machado ECS.Moreira JJ.Menezes AS.Mostardeiro MA.Wessjohann LA. Phytochem. 1998, 47: 125 - 35
Morel AF.Machado EC.Wessjohann LA. Phytochem. 1995, 39: 431 - 36
Lin HY.Chen CH.Liu K.Lee SS. Helv. Chim. Acta 2003, 86: 127 - 37
Giacomelli SR.Maldaner G.Gonzaga WA.Garcia CM.da Silva UF.Dalcol II.Morel AF. Phytochemistry 2004, 65: 933 - 38
Lewis JR. Nat. Prod. Rep. 1998, 15: 417 - 39
Kim YA.Shin HN.Park MS.Cho SH.Han SY. Tetrahedron Lett. 2003, 44: 2557 - 40
Mostardeiro MA.Ethur EM.Morel AF.Wessjohann LA. J. Prakt. Chem. 1997, 339: 467 - 41
Temal-Laib T.Chastanet J.Zhu JP. J. Am. Chem. Soc. 2002, 124: 583 - 42
Bowers MM.Carroll P.Joullié MM. J. Chem. Soc., Perkin Trans. 1 1989, 857 - 43
Leonard MS.Carroll PJ.Joullié MM. J. Org. Chem. 2004, 69: 2526 - 44
Flanagan DM.Joullié MM. Synth. Commun. 1990, 20: 459 - 45
Owens TD.Araldi G.-L.Nutt RF.Semple JE. Tetrahedron Lett. 2001, 42: 6271 - 46
Laib T.Zhu J. Tetrahedron Lett. 1999, 40: 83 - 47
Cristau P.Vors J.-P.Zhu J. Tetrahedron Lett. 2003, 44: 5575 - 48 An unusual C-C-bond-forming aldol macrocyclization was also attempted, see:
Robotti KM. Ph.D. Dissertation University of Michigan; USA: 1980. - 49
Frappier F.Rocchiccioli F.Jarreau F.-X.Pais M. Tetrahedron 1978, 34: 2911 - 50
Rocchiccioli F.Jarreau F.-X.Pais M. Tetrahedron 1978, 34: 2917 - 51
Lagarias JC.Houghten RA.Rapoport H. J. Am. Chem. Soc. 1978, 100: 8202 - 52
Nutt RF.Chen KM.Joullié MM. J. Org. Chem. 1984, 1013 - 53
Heffner RJ.Joullié MM. J. Am. Chem. Soc. 1992, 114: 10181 - 54
Schmidt U.Weinbrenner S. J. Chem. Soc., Chem. Commun. 1994, 1003 ; and references cited therein - 55
Schmidt U.Lieberknecht A.Griesser H.Talbiersky J. J. Org. Chem. 1982, 47: 3261 - 56
Schmidt U.Lieberknecht A.Griesser H.Häusler J. Angew. Chem., Int. Ed. Engl. 1981, 20: 281 - 57
Joullié MM.Nutt RF. In Alkaloids: Chemical and Biological Perspectives Vol. 3:Pelletier SW. Wiley; New York: 1985. p.113 - 58
Schmidt U.Prantz E. Angew. Chem., Int. Ed. Engl. 1977, 16: 328 - 59
Schmidt U.Ohler E. Angew. Chem., Int. Ed.. Engl. 1977, 16: 327 - 60
Wamhoff EW. The Alkaloids 1971, 1: 444 - 61
Krejcarek GE.Dominy BW.Lawton RG. J. Chem. Soc., Chem. Commun. 1968, 1450 - 62
Boisnard S.Zhu J. Tetrahedron Lett. 2002, 43: 2577 ; and refs 74a,b - 63
Janvier P.Bois-Choussy M.Bienaymé H.Zhu J. Angew. Chem. Int. Ed. 2003, 42: 811 ; Angew. Chem. 2003, 115, 835 - 64
Gámez-Montaño R.González-Zamora E.Potier P.Zhu J. Tetrahedron 2002, 58: 6351 - 65
Cristau P.Vors J.-P.Zhu J. Org. Lett. 2001, 3: 4079 -
66a
Dömling A. Chem. Rev. 2006, 106: 17 -
66b
Dömling A.Ugi I. Angew. Chem. Int. Ed. 2000, 39: 3168 ; Angew. Chem. 2000, 112, 3300 - 68
Beck B.Larbig G.Magnin-Lachaux M.Picard A.Herdtweck E.Dömling A. Org. Lett. 2003, 5: 1047 -
71a
Abeln S. Master Thesis Vrije Universiteit Amsterdam; The Netherlands: 2000. - Some recent relevant references (added in proof):
-
74a
Cristau P.Vors J.-P.Zhu J. QSAR & Comb. Sci. 2006, 25: 519 -
74b
Cristau P.Temol-Laib T.Bois-Choussy M.Martin M.-T.Vors J.-P.Zhu J. Chem. Eur. J. 2005, 11: 2668 -
74c
Tan N.-H.Zhou J. Chem. Rev. 2006, 106: 840
References
Gibson, C.; Sulyok, G.; Schmitt, J. S.; Dechantsreiter, M. A.; Haubner, R.; Hölzemann, G.; Goodman, S. L.; Kessler, H. From Proteins to Drugs: The RGD Story, The 8th Akabori Conference, Japanese-German Symposium on Peptide Science, Nagoya, Japan, 2000.
32Special issue: Peptide Libraries and Peptide Drugs, Mol. Diversity 2004, 8, 57-174
67As an example, a derivative with R4 = Ph and R3 = H decomposes within one hour, even when kept at -20 °C and stored under an argon atmosphere (see ref. 71). A similar frame-shifted approach to form the macrocyclic ring via Ugi-4CR to form moiety I resulted in dimeric structures, possibly 28-membered rings (see ref. 11).
69Rodrigues, O. E. D.; Braga, A. L.; Wessjohann, L. A. manuscript submitted.
70Orru, R. V. A.; de Greef, M.; Abeln, S.; Belkasmi, K.; Dömling, A.; Wessjohann, L. A. A Short and Flexible Route to Cyclopeptide Alkaloids, The 12th European Symposium on Organic Chemistry (ESOC 12), Groningen, The Netherlands, 2001.
72Later, the Zhu group in their conventional SNAr approach could prove that the retro-Michael reaction is, indeed, favored (see ref. 41). In an early work, Schmidt could show for his related system that sulfide formation occurs by this approach, but ether formation not (see refs. 58, 59).
73Broad signals in the 1H NMR spectrum and the presence of additional signals in the 13C NMR spectrum suggest coexisting conformers. Spectral data refer to major isomer.