RSS-Feed abonnieren
DOI: 10.1055/s-2006-950424
A Concise and Efficient Stereoselective Synthesis of the C1-C11 Fragment of Macrolactin A
Publikationsverlauf
Publikationsdatum:
08. September 2006 (online)
Abstract
A stereoselective synthesis of the C1-C11 fragment of macrolactin A, using original approaches for the introduction of the Z,E-diene stereochemistry and the C-7 stereogenic center, is reported. The adopted strategy has allowed us to build up the fragment by the assembly of three key intermediates via cross-metathesis, Still-Gennari, and Wittig olefinations. Opening of the commercially available chiral benzyl glycidol epoxide to the corresponding homoallylic alcohol introduced the C-7 chiral center. A cross-metathesis reaction was used to create the C5-C4 E double bond. The Still-Gennari reaction introduced the 2Z,4E-diene moiety and finally the Wittig reaction with a propargylic triphenylphosphorane introduced directly the 1,3-enyne unit in a highly efficient stereoselective fashion.
Key words
macrolactin A - cross-metathesis - Still-Gennari reaction - Wittig olefination - dienes
- 1
Gustafson K.Roman M.Fenical W. J. Am. Chem. Soc. 1989, 111: 7519 -
2a
Kim H.-H.Kim W.-G.Ryoo I.-J.Kim C.-J.Suk J.-E.Han K.-H.Hwang S.-Y.Yoo I.-D. J. Microbiol. Biotechnol. 1997, 7: 429 -
2b
Jaruchoktaweechai C.Suwanborirus K.Tanasupawatt S.Kittakoop P.Menasveta P. J. Nat. Prod. 2000, 63: 984 -
2c
Nagao T.Adachi K.Sakai M.Nishijima M.Sano H. J. Antibiot. 2001, 54: 333 -
2d
Romero-Tabarez M.Jansen R.Sylla M.Lünsdorf H.Häußler S.Santosa DA.Timmis KN.Molinari G. Antimicrob Agents Chemother. 2006, 50: 1701 - For the total synthesis, see:
-
3a
Smith AB.Ott GR. J. Am. Chem. Soc. 1996, 118: 13095 -
3b
Kim Y.Singer RA.Carreira EM. Angew. Chem. Int. Ed. 1998, 37: 1261 -
3c
Marino JP.McClure MS.Holub DP.Comasseto JV.Tucci FC. J. Am. Chem. Soc. 2001, 124: 1664 - For partial syntheses, see:
-
4a
Benvegnu T.Schio L.Le Floch Y.Grèe R. Synlett 1994, 505 -
4b
Donaldson WA.Bell PT.Wang Z.Bennett DW. Tetrahedron Lett. 1994, 35: 5829 -
4c
Boyce RJ.Pattenden G. Tetrahedron Lett. 1996, 37: 3501 -
4d
Benvegnu T.Toupet L.Greè R. Tetrahedron 1996, 52: 11811 -
4e
Benvegnu T.Greè R. Tetrahedron 1996, 52: 11821 -
4f
Prahlad V.Donaldson WA. Tetrahedron Lett. 1996, 37: 9169 -
4g
Gonzàlez A.Aiguadè J.Urp F.Villarasa J. Tetrahedron Lett. 1996, 37: 8949 -
4h
Tanimori S.Morita Y.Tsubota M.Nakayama M. Synth. Commun. 1996, 26: 559 -
4i
Donaldason WA.Barmann H.Prahlad V.Tao C.Yun YK.Wang Z. Tetrahedron 2000, 56: 2283 -
4j
Li S.Xu R.Bai D. Tetrahedron Lett. 2000, 41: 3463 -
4k
Hoffmann HMR.Vakalopoulos A. Org. Lett. 2001, 3: 177 -
4l
Shukun L.Donaldson WA. Synthesis 2003, 13: 2064 -
4m
Fukuda A.Kobayashi Y.Kimachi T.Takemoto Y. Tetrahedron 2003, 59: 9305 -
4n
Li S.Xiao X.Yan X.Xu R.Bai D. Tetrahedron 2005, 61: 11291 - For a total synthesis of an analogue of macrolactin A, see:
-
4o
Kobayashi Y.Fukuda A.Kimachi T.Ju-ichi M.Takemoto Y. Tetrahedron Lett. 2004, 45: 677 -
4p
Kobayashi Y.Fukuda A.Kimachi T.Ju-ichi M.Takemoto Y. Tetrahedron 2005, 61: 2607 - 5
Bonini C.Chiummiento L.Pullez M.Solladié G.Colobert F. J. Org. Chem. 2004, 69: 5015 - 6 Extensive work on different propargylic alcohols led to a general protocol for the preparation of aromatic and heteroaromatic sulfones as reported in:
Bonini C.Chiummiento L.Videtta V. Synlett 2005, 3067 -
7a
Blakemore PR. J. Chem. Soc., Perkin Trans. 1 2002, 2563 -
7b
Baudin JB.Hareau G.Julia SA.Lorne R.Ruel O. Bull. Soc. Chim. Fr. 1993, 130: 336 -
7c
Baudin JB.Hareau G.Julia SA.Lorne R.Ruel O. Bull. Soc. Chim. Fr. 1993, 130: 856 -
7d
Baudin JB.Hareau G.Julia SA.Ruel O. Tetrahedron Lett. 1991, 32: 1175 - 9
Bonini C.Chiummiento L.Lopardo MT.Pullez M.Colobert F.Solladié G. Tetrahedron Lett. 2003, 44: 2695 - For recent reviews of the alkene metathesis reaction, see:
-
10a
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4490 -
10b
Schmidt B.Hermanns J. Top. Organomet. Chem. 2004, 7: 223 -
10c
Fürstner A. Angew. Chem. Int. Ed. 2000, 39: 3012 -
10d
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413 - 11 These high Z selectivities prompted us to study the one-pot Julia olefination with propargylic sulfone 6 and several different aromatic and aliphatic aldehydes more extensively:
Bonini C.Chiummiento L.Videtta V. Synlett 2006, 2079 -
12a
Still WC.Gennari C. Tetrahedron Lett. 1983, 24: 4405 -
12b
Yu W.Su M. Tetrahedron Lett. 1999, 40: 6725
References and Notes
The stereochemical outcome of the one-pot Julia olefination is generally substrate (sulfone and aldehyde) controlled. Moreover, there are some examples where β,γ-unsaturated BT-sulfones give high levels of E stereoselectivity (see ref. 7a).
13Attempts were made to prepare the tributyl propargylic phosphorane but we had some problems obtaining it pure.
14Compound 3 : R f 0.26 (PE-Et2O-CH2Cl2, 99:2:1). 1H NMR (500 MHz, CDCl3): δ = 7.40 (dd, J 4,5 = 14.4 Hz, J 4,3 = 11.9 Hz, 1 H), 6.55 (t, J 3,2 = J 3,4 = 11.0 Hz, 1 H), 6.18 (dd, J 8,9 = 16.0 Hz, J 8,7 = 5.0 Hz, 1 H), 6.03 (dt, J 5,4 = 15.5 Hz, J 5,6 = 8.0 Hz, 1 H), 5.72 (d, J 9,8 = 16.0 Hz, 1 H), 5.61 (d, J 2,3 = 11.5 Hz, 1 H), 4.26 (m, 1 H), 3.73 (s, 3 H), 2.41 (m, 2 H), 0.89 (s, 9 H), 0.19 (s, 9 H), 0.03 (s, 6 H). 13C NMR (125 MHz, CDCl3): δ = 166.9, 146.4, 145.0, 140.4, 129.2, 115.8, 109.2, 103.3, 95.0, 71.8, 51.1, 41.3, 25.8, 18.1, -0.1, -4.6, -4.9. EI-MS: m/z (%) = 392 (100), 267 (100), 73 (50), 75 (20), 45. Anal. Calcd for C21H36O3Si2: C, 64.23; H, 9.24. Found: C, 64.32; H, 9.18.