Subscribe to RSS
DOI: 10.1055/s-2006-951510
Aromatic Amination of Aryl Bromides Catalysed by Copper/β-Diketone Catalysts: The Effect of Concentration
Publication History
Publication Date:
25 October 2006 (online)
Abstract
CuCl ligated with β-diketones were found to be good catalysts for the amination of aryl bromides. Crucial is the concentration of the substrates: at 5 M the rate and selectivity improves substantially. In addition, K2CO3 can be used as base instead of expensive Cs2CO3. Primary and secondary amines, heterocycles and anilines could be arylated in good yields.
Key words
amination - copper - halide - diketones - concentration
- For some recent applications in the pharmaceutical field, see:
-
1a
Gosh A.Sieser JE.Caron S.Couturier M.Dupont-Gaudet K.Girardin M. J. Org. Chem. 2006, 71: 1258 -
1b
Zhao M.Yin J.Huffmann MA. Tetrahedron 2006, 62: 1110 -
1c
Damon DB.Dugger RW.Hubbs SE.Scott JM.Scott RW. Org. Process Res. Dev. 2006, 10: 472 - 2
Kisselev R.Thelakkat M. Chem. Commun. 2002, 1530 - 3
Wu J.Watson MD.Müllen K. Angew. Chem. Int. Ed. 2003, 42: 5329 -
4a
Koeckelberghs G.De Cremer L.Vanormelingen W.Dehaen W.Verbiest T.Persoons A.Samyn C. Tetrahedron 2005, 61: 687 -
4b
Patil NM.Kelkar AA.Chaudhari RV. J. Mol. Catal. A: Chem. 2004, 223: 45 -
4c
Patil NM.Kelkar AA.Chaudhari RV. Tetrahedron Lett. 2002, 43: 7143 - 5
Suo Z.Drobizhev M.Spangler CW.Christensson N.Rebane A. Org. Lett. 2005, 7: 4807 -
6a
Ullmann F. Ber. Dtsch. Chem. Ges. 1903, 36: 2382 -
6b Review:
Lindley J. Tetrahedron 1984, 40: 1433 -
7a
Buchwald SL.Mauger C.Mignani G.Scholz U. Adv. Synth. Catal. 2006, 348: 23 -
7b
Schlummer B.Scholz U. Adv. Synth. Catal. 2004, 346: 1599 -
7c
Lei J.Buchwald SL. In Metal-Catalyzed Cross-Coupling Reactionsde Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. p.699 -
7d
Hartwig JF. In Handbook of Organopalladium Chemistry in Organic SynthesisNegishi E. John Wiley and Sons, Inc.; New York: 2002. p.1051 -
8a
Goldberg I. Ber. Dtsch. Chem. Ges. 1906, 39: 1691 -
8b For a recent catalyst, see:
Klapars A.Huang X.Buchwald SE. J. Am. Chem. Soc. 2002, 124: 7421 -
9a
Ma D.Zhang Y.Yao J.Wu S.Tao F. J. Am. Chem. Soc. 1998, 120: 12459 -
9b
Ma D.Xia C. Org. Lett. 2001, 3: 2583 -
9c
Zhang H.Cai Q.Ma D. J. Org. Chem. 2005, 70: 5164 - 10
Goodbrand HB.Hu N.-X. J. Org. Chem. 1999, 64: 670 - 11
Lang F.Zewge D.Houpis IN.Volante RP. Tetrahedron Lett. 2001, 42: 3251 -
12a
Gujadhur R.Venkataraman D.Kintigh JT. Tetrahedron Lett. 2001, 4791 -
12b
Gujadhur RK.Bates CG.Venkataraman D. Org. Lett. 2001, 3: 4315 -
13a
Klapars A.Antilla JC.Huang X.Buchwald SL. J. Am. Chem. Soc. 2001, 123: 7727 -
13b
Kwong FY.Klapars A.Buchwald SL. Org. Lett. 2002, 4: 581 -
13c
Antilla JC.Klapars A.Buchwald SL. J. Am. Chem. Soc. 2002, 124: 11684 -
13d
Kwong FY.Buchwald SL. Org. Lett. 2003, 5: 793 -
14a
Christau H.-J.Cellier PP.Spindler J.-F.Taillefer M. Eur. J. Org. 2004, 695 -
14b
Christau H.-J.Cellier PP.Spindler J.-F.Taillefer M. Chem. Eur. J. 2004, 10: 5607 -
15a
Ley SV.Thomas AW. Angew. Chem. Int. Ed. 2003, 42: 5400 -
15b
Kunz K.Scholz U.Ganzer D. Synlett 2003, 2428 -
16a
Kelkar AA.Patil NM.Chaudhari RV. Tetrahedron Lett. 2002, 43: 7143 -
16b
Lu Z.Twieg RJ.Huang SD. Tetrahedron Lett. 2003, 44: 6289 -
16c
Okano K.Tokuyama H.Fukuyama T. Org. Lett. 2003, 5: 4987 -
16d
Haider J.Kunz K.Scholz U. Adv. Synth. Catal. 2004, 346: 717 -
16e
Gajare AS.Toyota K.Yoshifuji M.Ozawa F. Chem. Commun. 2004, 1994 -
16f
Lu Z.Twieg RJ. Tetrahedron 2005, 61: 903 -
16g
Wang P.-S.Liang C.-K.Leung M. Tetrahedron 2005, 61: 2931 -
16h
Kuil M.Bekedam EK.Visser GM.van den Hoogenband A.Terpstra JW.Kamer PCJ.van Leeuwen PWNM.van Strijdonck GPF. Tetrahedron Lett. 2005, 46: 2405 -
16i
Lu Z.Twieg RJ. Tetrahedron Lett. 2005, 46: 2997 -
16j
Xu L.Zhu D.Wu F.Wang R.Wan B. Tetrahedron 2005, 61: 6553 -
16k
Choudary BM.Sridhar C.Kantam ML.Venkanna GT.Sreedhar B. J. Am. Chem. Soc. 2005, 127: 9948 -
16l
Rao H.Fu H.Jiang Y.Zhao Y. J. Org. Chem. 2005, 70: 8107 -
16m
Movassaghi M.Ondrus AE. J. Org. Chem. 2005, 70: 8638 -
16n
Yang T.Lin C.Fu H.Jiang Y.Zhao Y. Org. Lett. 2005, 7: 4781 -
16o
Pu Y.-M.Ku Y.-Y.Grieme T.Henry R.Bhatia AV. Tetrahedron Lett. 2006, 47: 149 - 17
Lambers MH,de Lange B,de Vries AHM,de Vries JG, andSereinig N. inventors; WO 2006009431 to DSM IP ASSETS B.V.. - 18
Buck E.Song ZJ.Tschaen D.Dormer PG.Volante RP.Reider PJ. Org. Lett. 2002, 4: 1623 - 19
Kaga H.Miura M.Orito K. Synthesis 1989, 864 - 21
Shi L.Wang M.Fan C.Zhang F.Tu Y. Org. Lett. 2003, 5: 351 - 22
Beller M.Breindl C.Riermeier TH.Tillack A. J. Org. Chem. 2001, 66: 1403 - 24
Shafir A.Buchwald SL. J. Am. Chem. Soc. 2006, 128: 8742
References and Notes
We presume that either the secondary or the tertiary amine is the reductant.
23
Experimental Procedure.
A 50-mL thermostated reactor fitted with overhead stirrer (H.E.L auto-MATE) was charged with K2CO3 (7.26 g, 52.5 mmol), CuCl (0.25 g, 2.5 mmol) and 10 mL of NMP. The reactor was flushed with N2 and stirring was started at 500 rpm. After addition of 50 mmol of aryl bromide, 60 mmol of amine and 6.25 mmol of diketone ligand the mixture was heated to 130 °C under N2 and stirred for 16 h (or longer for reluctant substrates). In screening experiments a sample of 100-200 mg was taken after this period, which was diluted with 10 mL of EtOAc and filtered over a syringe filter. Analysis was by GC [HP5 column (30 m, id 0.32 mm, 0.25 µm film), 70-270 °C min in 10 min, 2 min at 270 °C] using dihexyl ether as internal standard. For preparative runs the reaction mixture was partitioned between CH2Cl2 and 1 N aq NaHCO3. The organic phase was washed several times with 1 N aq NaHCO3 to remove NMP, dried and the solvent was removed on the rotavap. The residue was purified by flash chromatography on silica (heptane-EtOAc 15:5).