Subscribe to RSS
DOI: 10.1055/s-2006-951681
© Georg Thieme Verlag KG Stuttgart · New York
The Inhibition of Bone Resorption in Rats Treated with (-)-Menthol is Due to its Metabolites
Publication History
Received: January 26, 2006
Accepted: August 12, 2006
Publication Date:
04 October 2006 (online)
Abstract
(-)-Menthol, a monoterpene from Mentha species (Lamiaceae), has been shown to inhibit bone resorption in vivo by an unknown mechanism. In the present study, plasma and urine profiling in rats determined by GC/MS demonstrate that (-)-menthol is extensively metabolized, mainly by hydroxylation and carboxylation, and excreted in the urine, in part as glucuronides. In plasma, very low concentrations of (-)-menthol metabolites were detected after a single dose of (-)-menthol, whereas after repeated treatment, several times higher concentrations and long residence times were measured. In contrast, the elimination of unchanged (-)-menthol was increased by repeated treatment. (-)-Menthol, at concentrations found in plasma, did not inhibit bone resorption in cultured mouse calvaria (skull). However, the neutral metabolites of (-)-menthol, extracted from urine of rats fed with (-)-menthol, inhibited bone resorption in vitro, the concentrations being at plasma level or higher. These results suggest that not (-)-menthol itself, but one or several of its neutral metabolites inhibit the bone resorbing cells in vivo.
Key words
(-)-Menthol - metabolites - GC/MS - rat pharmacokinetics - bone resorption
- Supporting Information for this article is available online at
- Supporting Information .
References
- 1 Mühlbauer R C, Lozano A, Palacio S, Reinli A, Felix R. Common herbs, essential oils, and monoterpenes potently modulate bone metabolism. Bone. 2003; 32 372-80
- 2 Mühlbauer R C. Effect of various classes of foodstuffs and beverages of vegetable origin on bone metabolism in the rat. In: Burckhardt P, Dawson-Hughes B, Heaney RP, editors Amsterdam; Elsevier Academic Press 2004: p 297-313
- 3 Melton 3rd L J, Chrischilles E A, Cooper C, Lane A W, Riggs B L. Perspective. How many women have osteoporosis? J Bone Miner Res. 1992; 7 1005-10
- 4 Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 1993 94: 646-50
- 5 Hallberg I, Rosenqvist A M, Kartous L, Lofman O, Wahlstrom O, Toss G. Health-related quality of life after osteoporotic fractures. Osteoporos Int. 2004; 15 834-41
- 6 Melton 3rd L J, Heaney R P. Too much medicine? or too little?. Bone. 2003; 32 327-31
- 7 Manolagas S C. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000; 21 115-37
- 8 Kanis J A. The use of calcium in the management of osteoporosis. Bone. 1999; 24 279-90
- 9 Madyastha K M, Srivatsan V. Studies on the metabolism of l-menthol in rats. Drug Metab Dispos. 1988; 16 765-72
- 10 Yamaguchi T, Caldwell J, Farmer P B. Metabolic fate of [3H]-l-menthol in the rat. Drug Metab Dispos. 1994; 22 616-24
- 11 Piec G, Mirkovitch J, Palacio S, Muhlradt P F, Felix R. Effect of MALP-2, a lipopeptide from Mycoplasma fermentans, on bone resorption in vitro. Infect Immun. 1999; 67 6281-5
- 12 Feyen J H, Kuntzelmann G M. Inhibitory effect of okadaic acid on bone resorption in neonatal mouse calvaria in vitro. Protein dephosphorylation as an important regulatory mechanism in the bone resorption process. Biochem Biophys Res Commun. 1991; 178 758-63
- 13 Lerner U H. Transforming growth factor-beta stimulates bone resorption in neonatal mouse calvariae by a prostaglandin-unrelated but cell proliferation-dependent pathway. J Bone Miner Res. 1996; 11 1628-39
- 14 Fang-Kircher S G, Herkner K, Windhager R, Lubec G. The effects of acid glucosaminoglycans on neonatal calvarian cultures - a role of keratan sulfate in Morquio syndrome?. Life Sci. 1997; 61 771-5
- 15 Chikazu D, Shindo M, Iwasaka T, Katagiri M, Manabe N, Takato T. et al . A novel synthetic triazolotriazepine derivative JTT-606 inhibits bone resorption by down-regulation of action and production of bone resorptive factors. J Bone Miner Res. 2000; 15 674-82
- 16 Spichiger M, Mühlbauer R C, Brenneisen R. Determination of menthol in plasma and urine of rats and humans by headspace solid phase microextraction and gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2004; 799 111-7
- 17 Mühlbauer R C, Fleisch H. A method for continual monitoring of bone resorption in rats: evidence for a diurnal rhythm. Am J Physiol. 1990; 259 R679-89
- 18 Mühlbauer R C, Fleisch H. The diurnal rhythm of bone resorption in the rat. Effect of feeding habits and pharmacological inhibitors. J Clin Invest. 1995; 95 1933-40
- 19 Mühlbauer R C, Li F. Effect of vegetables on bone metabolism. Nature. 1999; 401 343-4
Prof. Dr. Rudolf Brenneisen
Laboratory for Phytopharmacology, Bioanalytics & Pharmacokinetics
Department of Clinical Research
University of Bern
Murtenstrasse 35
3010 Bern
Switzerland
Phone: +41-31-632-8714
Fax: +41-31-632-8721
Email: rudolf.brenneisen@dkf.unibe.ch
- www.thieme-connect.de/ejournals/toc/plantamedica