Planta Med 2006; 72(14): 1300-1304
DOI: 10.1055/s-2006-951690
Original Paper
Pharmacology
© Georg Thieme Verlag KG Stuttgart · New York

Tetrandrine Selectively Protects against Amyloid-β Protein - but not against MPTP-Induced Cytotoxicity in SK-N-SH Neuroblastoma Cells

Wen-Fei Chiou1 , 2 , Wan-Shin Lee3 , Pen-Ho Yeh3
  • 1National Research Institute of Chinese Medicine, Taipei, Taiwan, R.O.C.
  • 2Institute of Life Science, National Tai-Tung University, Taitung, Taiwan, R.O.C.
  • 3Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, R.O.C.
Weitere Informationen

Publikationsverlauf

Received: January 12, 2006

Accepted: August 21, 2006

Publikationsdatum:
18. Oktober 2006 (online)

Abstract

The evidence for loss of Ca2+ homeostasis due to neuronal degeneration is considerable and rapidly increasing. In this study, we try to evaluate the protective effect of tetrandrine (TET), an alkaloid isolated from the Chinese medicinal herb Radix Stephania tetrandrae S., on amyloid-β protein (Aβ) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced cell death in SK-N-SH neuroblastoma cells. Both compounds reduced cell viability in a concentration-dependent manner after 72 h in culture. Cell proliferation in the presence of 20 μM Aβ or 0.4 mM MPTP was reduced to 58.3 ± 4.9 or 54.9 ± 5.5 %, respectively. TET (0.1, 0.5 and 1 μM) alone had no significant effect on cell survival; however, it prevented Aβ-induced cell death in a concentration-dependent manner. In contrast, TET failed to counteract MPTP-induced cytotoxicity. Also, an L-type calcium channel blocker, nimodipine, solely reversed Aβ-induced cell death. On the other hand, ELISA determination of mono-/oligo-nucleosomes accumulation showed that the mode of cell death evoked by Aβ was necrosis while that evoked by MPTP was presumably apoptosis. These results suggest that TET may mitigate the harmful effects of Aβ on cell survival, probably by interfering via the necrotic signal related to Ca2+ overloading through the L-type calcium channel.

References

  • 1 Trump B F, Berezesky I K. Calcium-mediated cell injury and cell death.  FASEB J. 1995;  9 219-28
  • 2 Pascale A, Etcheberrigaray R. Calcium alterations in Alzheimer’s disease: pathophysiology, models and therapeutic opportunities.  Pharmacol Res. 1999;  39 81-8
  • 3 He L M, Chen L Y, Lou X L, Qu A L, Zhou Z, Xu T. Evaluation of β-amyloid peptide 25 - 35 on calcium homeostasis in cultured rat dorsal root ganglion neuron.  Brain Res. 2002;  939 65-75
  • 4 Chen T S, Koutsilieri E, Rausch W D. MPP+ selectively affects calcium homeostasis in mesencephalic cell cultures from embryonal C57/B16 mice.  J Neural Transm. 1995;  100 153-63
  • 5 Weiss J H, Pike C J, Cotman C W. Ca2+ channel blockers attenuate β-amyloid peptide toxicity to cortical neurons in culture.  J Neurochem. 1994;  62 372-5
  • 6 Huang Y T, Hong C Y. Tetrandrine.  Cardiovasc Drug Rev. 1998;  16 1-15
  • 7 Shen Y C, Chou C J, Chiou W F, Chen C F. Anti-inflammatory effects of the partially purified extract of Radix Stephaniae tetrandrae: comparative studies of its active principles tetrandrine and fangchinoline on human polymorphonuclear leukocyte functions.  Mol Pharmacol. 2001;  60 1083-90
  • 8 Liu Q Y, Karpinski E, Pang P KT. Tetrandrine inhibits both T and L calcium channel currents in ventricular cells.  J Cardiovasc Pharmacol. 1992;  20 513-9
  • 9 Takemura H, Imoto K, Ohshika H, Kwan C Y. Tetrandrine as a calcium antagonist.  Clin Exp Pharmacol Physiol. 1996;  23 751-3
  • 10 Kwan C Y. Plant-derived drugs acting on cellular Ca2+ mobilization in vascular smooth muscle: tetramethylpyrazine and tetrandrine.  Stem Cell. 1994;  12 64-7
  • 11 Pang L, Hoult R S. Cytotoxicity to macrophages of tetrandrine, an antisilicosis alkaloid, accompanied by an overproduction of prostaglandins.  Biochem Pharmacol. 1997;  53 773-82
  • 12 Frankfurt O S, Krishan A. Enzyme-linked-immunosorbent assay (ELISA) for the specific detection of apoptotic cells and its application to rapid drug screening.  J Immunol Methods. 2001;  253 133-44
  • 13 Frankfurt O S, Krishan A. Identification of apoptotic cells by formamide-induced DNA denaturation in condensed chromatin.  J Histochem Cytochem. 2001;  49 369-78
  • 14 Lee W S, Tsai W J, Yeh P H, Wei B L, Chiou W F. Divergent role of calcium an Aβ and MPTP induced cell death in SK-N-SH neuroblastoma.  Life Sci. 2006;  78 1268-75
  • 15 Hofer A M, Machen T E. Techniques for in situ measurement of calcium intracellular inositol 1,4,5-triphosphate-sensitive stores using the fluorescent indicator mag-Fura-2.  Proc Natl Acad Sci USA. 1993;  90 2598-602
  • 16 Jin Q, Kang C, Soh Y, Sohn N W, Lee J, Cho Y H. et al . Tetrandrine cytotoxicity and its dual effect on oxidative stress-induced apoptosis through modulating cellular redox state in Neuro 2a mouse neuroblastoma cells.  Life Sci. 2002;  71 2053-66
  • 17 Shi X, Mao Y, Saffiotti U, Wang L, Rojanasakul U, Leonard S S. et al . Antioxidant activity of tetrandrine and its inhibition of quartz-induced lipid peroxidation.  J Toxicol Environ Health. 1995;  46 233-48
  • 18 Arispe N, Pollard H B, Rojas E. β-Amyloid Ca2+-channel hypothesis for neuronal death in Alzheimer’s disease.  Mol Cell Biochem. 1994;  140 119-25
  • 19 Suh Y H, Chong Y H, Kim S H, Choi W, Min K, Jeong S J. et al . Molecular physiology, biochemistry, and pharmacology of Alzheimer’s amyloid precursor protein (APP).  Ann New York Acad Sci. 1996;  786 169-83
  • 20 Gschwind M, Huber G. Apoptotic cell death induced by beta-amyloid peptide is cell type dependent.  J Neurochem. 1995;  65 292-300
  • 21 Burker R E. Programmed cell death and Parkinson’s disease.  Mov Disord. 1998;  13 17-23
  • 22 Zamzami N, Susin S A, Marchetti P. Mitochondrial control of nuclear apoptosis.  J Exp Med. 1996;  183 1533-44
  • 23 Hartley A, Stone J M, Heron C, Cooper J M, Schapira A HV. Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson’s disease.  J Neurochem. 1994;  63 1987-90
  • 24 Ajinomoto C o. Inc. Dihydropyridine derivative. Patents WO0078719-A, WO0078720-A and, WO0078730-A; 2000

Wen-Fei Chiou, Ph. D.

Division of Basic Chinese Medical Research,

National Research Institute of Chinese Medicine

No. 155-1, Sec. 2, Li-Nung St.

Shipai

Taipei 112

Taiwan

Republic of China

Telefon: +886-2-282-0199 (4481)

Fax: +886-2-2826-4343

eMail: wfchiou@cma23.nricm.edu.tw