RSS-Feed abonnieren
DOI: 10.1055/s-2006-952013
Bedeutung der Körperfettverteilung für die Entstehung von Insulinresistenz und Typ-2-Diabetes
Body Fat Distribution and Insulin ResistancePublikationsverlauf
Publikationsdatum:
03. April 2007 (online)
Zusammenfassung
Während die Bedeutung der generalisierten und abdominellen Adipositas für die Insulinresistenz und das gesteigerte Diabetesrisiko in epidemiologischen und experimentellen Untersuchungen in der Vergangenheit umfassend demonstriert wurde, ist die Bedeutung der viszeralen bzw. subkutanen abdominalen Fettverteilung diesbezüglich noch nicht hinreichend klar. Eine Vielzahl von epidemiologischen Daten deutet auf ein vermehrtes Auftreten von Insulinresistenz und ein erhöhtes Diabetesrisiko bei viszeraler Adipositas hin. Dabei spielen möglicherweise die erhöhten freien Fettsäuren, eine vermehrte Aktivität der 11β-Hydroxysteroid-Dehydrogenase Typ 1, niedrigere Testosteron- und Wachstumshormonspiegel oder die vermehrte Bildung von Plasminogen-Aktivator-Inhibitor-1 und von Zytokinen, wie TNF-α und IL-6, eine wichtige Rolle. Insgesamt bleiben bezüglich des subkutanen Abdominalfettes noch viele Fragen ungeklärt. Möglicherweise trägt dieses aber entscheidend zur pathogenen Rolle des Abdominalfettes bei. Aktuell findet sich eine wachsende Evidenz für die metabolische Bedeutung weiterer Fettkompartimente, wie z. B. dem intramuskulären Lipidgehalt.
Abstract
The effect of generalized obesity and particularly central body fat distribution on insulin resistance and incidence of type 2 diabetes was convincingly demonstrated in epidemiological and experimental studies. However, the impact of visceral and subcutaneous abdominal fat depots remains unclear. Various epidemiological data suggested an increased risk of insulin resistance and type 2 diabetes in individuals with visceral obesity. High free fatty acids, elevated activity of 11β-hydroxysteroid dehydrogenase type 1 in visceral adipose tissue, low levels of testosterone, growth hormone and IGF-1 or the increased secretion of plasminogen activator inhibitor-1 and of several cytokines, like TNF-α and IL-6 are candidates potentially mediating these effects. The impact of other abdominal fat compartments like subcutaneous abdominal adipose tissue is still under debate, even if some studies indicate a separate effect of this fat compartment on insulin resistance and glucose tolerance. Furthermore a growing body of evidence suggests insulin resistance inducing effects of increased intramyocellular lipid levels. However, the precise impact of the muscular lipid content and the mechanisms linking intramyocellular fat and insulin resistance are still not fully understood.
Schlüsselwörter
abdominelle Adipositas - viszerales Fettgewebe - subkutanes Fettgewebe - Diabetes mellitus - Insulinresistenz - Fettgewebshormone
Key words
abdominal obesity - visceral fat - subcutaneous fat - diabetes mellitus - insulin resistance - adipocytokines
Literatur
- 1 Zimmer P, Alberti K G, Shaw J. Global and societal implications of the diabetes epidemic. Naure. 2001; 414 782-787
- 2 Wilson B D, Wilson N C, Russel D G. Obesity and boy fat distribution in the New Zealand population. N Z Med J. 2001; 114 127-130
- 3 Kuczmarski R J, Flegal K M, Campbell S M, Johnson C L. Increasing prevalence of overweight among US adults. The National Health and Nutrition Examination Surveys 1960 to 1991. JAMA. 1994; 272 205-211
- 4 WHO/FAO .Diet, Nutrition and the Prevention of Chronic Diseases WHO TRS 916. Geneva; 2003
- 5 Pi-Sunyer F X. Comorbidities of overweight and obesity: current evidence and research issues. Med Sci ports Exerc. 1999; 31 S602-S608
- 6 Calle E E, Thun M J, Petrelli J M, Rodriguez C, Heath Jr C W. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med. 1999; 341 1097-1105
- 7 Manson J E, Willett W C, Stampfer M J, Colditz G A, Hunter D J, Hankinson S E, Hennekens C H, Speizer F E. Body weight and mortality among women. N Engl J Med. 1995; 333 677-685
- 8 Itallie T B Van. Health implications of overweight and obesity in the United States. Ann Intern Med. 1985; 103 983-988
- 9 Melanson K J, McInnis K J, Rippe J M, Blackburn G, Wilson P F. Obesity and cardiovascular disease risk: research update. Cardiol Rev . 2001; 9 202-207
- 10 Eckel R H. Obesity and heart disease: a statement for healthcare professionals from the Nutrition Committee. American Heart Association Circulation. 1997; 96 3248-3250
- 11 Huang Z, Willett W C, Manson J E, Rosner B, Stampfer M J, Speizer F E, Colditz G A. Body weight, weight change, and risk for hypertension in women. Ann Intern Med. 1998; 128 81-88
- 12 Despres J P. The insulin resistance-dyslipidemic syndrome of visceral obesity: effect on patients. Risk Obes Res. 1998; 6, Suppl 1 8S-17S
- 13 Colditz G A, Willett W C, Rotnitzky A, Manson J E. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 1995; 122 481-486
- 14 Harris M I, Flegal K M, Cowie C C, Eberhardt M S, Goldstein D E, Little R R, Wiedmeyer H M, Byrd-Holt D D. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988 - 1994. Diabetes Care. 1998; 21 518-524
- 15 Kahn S E, Prigeon R L, McCulloch D K, Boyko E J, Bergman R N, Schwartz M W, Neifing J L, Ward W K, Beard J C, Palmer J P. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes. 1993; 42 1663-1672
- 16 Chan J M, Rimm E B, Colditz G A, Stampfer M J, Willett W C. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994; 17 961-969
- 17 Tuomilehto J, Lindstrom J, Eriksson J G, Valle T T, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001; 344 1343-1350
- 18 Knowler W C, Barrett-Connor E, Fowler S E, Hamman R F, Lachin J M, Walker E A, Nathan D M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002; 346 393-403
- 19 Lamarche B. Abdominal obesity and its metabolic complications: implications for the risk of ischaemic heart disease Coron. Artery Dis. 1998; 9 473-481
- 20 Despres J P. Abdominal obesity as important component of insulin-resistance syndrome. Nutrition. 1993; 9 452-459
- 21 Ohlson L O, Larsson B, Bjorntorp P, Eriksson H, Svardsudd K, Welin L, Tibblin G, Wilhelmsen L. Risk factors for type 2 (non-insulin-dependent) diabetes mellitus. Thirteen and one-half years of follow-up of the participants in a study of Swedish men born in 1913. Diabetologia. 1988; 31 798-805
- 22 Folsom A R, Kushi L H, Anderson K E, Mink P J, Olson J E, Hong C P, Sellers T A, Lazovich D, Prineas R J. Associations of general and abdominal obesity with multiple health outcomes in older women: the Iowa Women's Health Study. Arch Intern Med. 2000; 160 2117-2128
- 23 Carey V J, Walters E E, Colditz G A, Solomon C G, Willett W C, Rosner B A, Speizer F E, Manson J E. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses' Health Study. Am J Epidemiol. 1997; 145 614-619
- 24 Ohlson L O, Larsson B, Svardsudd K, Welin L, Eriksson H, Wilhelmsen L, Bjorntorp P, Tibblin G. The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes. 1985; 34 1055-1058
- 25 Lundgren H, Bengtsson C, Blohme G, Lapidus L, Sjostrom L. Adiposity and adipose tissue distribution in relation to incidence of diabetes in women: results from a prospective population study in Gothenburg, Sweden. Int J Obes. 1989; 13 413-423
- 26 Cassano P A, Rosner B, Vokonas P S, Weiss S T. Obesity and body fat distribution in relation to the incidence of non-insulin-dependent diabetes mellitus. A prospective cohort study of men in the normative aging study. Am J Epidemiol. 1992; 136 1474-1486
- 27 Schulze M B, Heidemann C, Schienkiewitz A, Bergmann M M, Hoffmann K, Boeing H. Comparison of anthropometric characteristics in predicting the incidence of type 2 diabetes in the EPIC-Potsdam study. Diabetes Care. 2006; 29 1921-1923
- 28 Wei M, Gaskill S P, Haffner S M, Stern M P. Waist circumference as the best predictor of noninsulin dependent diabetes mellitus (NIDDM) compared to body mass index, waist/hip ratio and other anthropometric measurements in Mexican Americans - a 7-year prospective study. Obes Res. 1997; 5 16-23
- 29 Warne D K, Charles M A, Hanson R L, Jacobsson L T, McCance D R, Knowler W C, Pettitt D J. Comparison of body size measurements as predictors of NIDDM in Pima Indians. Diabetes Care. 1995; 18 435-439
- 30 Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi M G, Commerford P, Lang C C, Rumboldt Z, Onen C L, Lisheng L, Tanomsup S, Wangai Jr P, Razak F, Sharma A M, Anand S S. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005; 366 1640-1649
- 31 Rexrode K M, Carey V J, Hennekens C H, Walters E E, Colditz G A, Stampfer M J, Willett W C, Manson J E. Abdominal adiposity and coronary heart disease in women. JAMA. 1998; 280 1843-1848
- 32 Bjorntorp P. Visceral obesity: a „civilization syndrome”. Obes Res. 1993; 1 206-222
- 33 Despres J P, Moorjani S, Lupien P J, Tremblay A, Nadeau A, Bouchard C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis. 1990; 10 497-511
- 34 Peiris A N, Sothmann M S, Hoffmann R G, Hennes M I, Wilson C R, Gustafson A B, Kissebah A H. Adiposity, fat distribution, and cardiovascular risk. Ann Intern Med. 1989; 110 867-872
- 35 Pouliot M C, Despres J P, Nadeau A, Moorjani S, Prud'Homme D, Lupien P J, Tremblay A, Bouchard C. Visceral obesity in men. Associations with glucose tolerance, plasma insulin, and lipoprotein levels. Diabetes. 1992; 41 826-834
- 36 Fujimoto W Y, Abbate S L, Kahn S E, Hokanson J E, Brunzell J D. The visceral adiposity syndrome in Japanese-American men. Obes Res. 1994; 2 364-371
- 37 Fujioka S, Matsuzawa Y, Tokunaga K, Tarui S. Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism. 1987; 36 54-59
- 38 Salmenniemi U, Ruotsalainen E, Vanttinen M, Vauhkonen I, Pihlajamaki J, Kainulainen S, Punnonen K, Laakso M. High amount of visceral fat mass is associated with multiple metabolic changes in offspring of type 2 diabetic patients. Int J Obes (Lond). 2005; 29 1464-1470
- 39 Nyholm B, Nielsen M F, Kristensen K, Nielsen S, Ostergard T, Pedersen S B, Christiansen T, Richelsen B, Jensen M D, Schmitz O. Evidence of increased visceral obesity and reduced physical fitness in healthy insulin-resistant first-degree relatives of type 2 diabetic patients. Eur J Endocrinol. 2004; 150 207-214
- 40 Cnop M, Landchild M J, Vidal J, Havel P J, Knowles N G, Carr D R, Wang F, Hull R L, Boyko E J, Retzlaff B M, Walden C E, Knopp R H, Kahn S E. The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations: distinct metabolic effects of two fat compartments. Diabetes. 2002; 51 1005-1015
- 41 Abate N, Garg A, Peshock R M, Stray-Gundersen J, Grundy S M. Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest. 1995; 96 88-98
- 42 Goodpaster B H, Thaete F L, Simoneau J A, Kelley D E. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes. 1997; 46 1579-1585
- 43 Goodpaster B H, Krishnaswami S, Harris T B, Katsiaras A, Kritchevsky S B, Simonsick E M, Nevitt M, Holvoet P, Newman A B. Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch Intern Med. 2005; 165 777-783
- 44 Purnell J Q, Kahn S E, Albers J J, Nevin D N, Brunzell J D, Schwartz R S. Effect of weight loss with reduction of intra-abdominal fat on lipid metabolism in older men. J Clin Endocrinol Metab. 2000; 85 977-982
- 45 Goodpaster B H, Kelley D E, Wing R R, Meier A, Thaete F L. Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. Diabetes. 1999; 48 839-847
- 46 Gonzalez-Ortiz M, Robles-Cervantes J A, Cardenas-Camarena L, Bustos-Saldana R, Martinez-Abundis E. The effects of surgically removing subcutaneous fat on the metabolic profile and insulin sensitivity in obese women after large-volume liposuction treatment. Horm Metab Res. 2002; 34 446-449
- 47 D'Andrea F, Grella R, Rizzo M R, Grella E, Grella R, Nicoletti G, Barbieri M, Paolisso G. Changing the metabolic profile by large-volume liposuction: a clinical study conducted with 123 obese women. Aesthetic Plast Surg. 2005; 29 472-478
- 48 Klein S, Fontana L, Young V L, Coggan A R, Kilo C, Patterson B W, Mohammed B S. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004; 350 2549-2557
- 49 Thorne A, Lonnqvist F, Apelman J, Hellers G, Arner P. A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int J Obes Relat Metab Disord. 2002; 26 193-199
- 50 Hansen E, Hajri T, Abumrad N N. Is all fat the same? The role of fat in the pathogenesis of the metabolic syndrome and type 2 diabetes mellitus. Surgery. 2006; 139 711-716
- 51 Fain J N. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm. 2006; 74 443-477
- 52 Boden G, Chen X, Ruiz J, White J V, Rossetti L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest. 1994; 93 2438-2446
- 53 Boden G. Free fatty acids FFA), a link between obesity and insulin resistance. Front Biosci. 1998; 3 D169-D175
- 54 Pouliot M C, Despres J P, Nadeau A, Tremblay A, Moorjani S, Lupien P J, Theriault G, Bouchard C. Associations between regional body fat distribution, fasting plasma free fatty acid levels and glucose tolerance in premenopausal women. Int J Obes. 1990; 14 293-302
- 55 Bjorntorp P. Body fat distribution, insulin resistance, and metabolic diseases. Nutrition. 1997; 13 795-803
- 56 Duclos M, Gatta B, Corcuff J B, Rashedi M, Pehourcq F, Roger P. Fat distribution in obese women is associated with subtle alterations of the hypothalamic-pituitary-adrenal axis activity and sensitivity to glucocorticoids. Clin Endocrinol (Oxf). 2001; 55 447-454
- 57 Marin P, Darin N, Amemiya T, Andersson B, Jern S, Bjorntorp P. Cortisol secretion in relation to body fat distribution in obese premenopausal women. Metabolism. 1992; 41 882-886
- 58 Tomlinson J W, Walker E A, Bujalska I J, Draper N, Lavery G G, Cooper M S, Hewison M, Stewart P M. 11β-hydroxysteroid dehydrogenase type 1: A tissue-specific regulator of glucocorticoid response. Endocr Rev. 2004; 25 831-866
- 59 Desbriere R, Vuaroqueaux V, Achard V, Boullu-Ciocca S, Labuhn M, Dutour A, Grino M. 11beta-hydroxysteroid dehydrogenase type 1 mRNA is increased in both visceral and subcutaneous adipose tissue of obese patients. Obesity (Silver Spring). 2006; 14 794-798
- 60 Bujalska I J, Kumar S, Hewison M, Stewart P M. Differentiation of adipose stromal cells: The roles of glucocorticoids and 11b-hydroxysteroid dehydrogenase. Endocrinology. 1999; 140 3188-3196
- 61 Marin P, Kvist H, Lindstedt G, Sjostrom L, Bjorntorp P. Low concentrations of insulin-like growth factor-I in abdominal obesity. Int J Obes Relat Metab Disord. 1993; 17 83-89
- 62 Mertens I, Planken P M Van der, Corthouts B, Wauters M, Peiffer F, Leeuw L I De, Gaal G L Van. Visceral fat is a determinant of PAI-1 activity in diabetic and non-diabetic overweight and obese women. Horm Metab Res. 2001; 33 602-607
- 63 Ritchie S A, Connell J M. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis 2006 [Epub ahead of prints]
- 64 Kelley D E, Goodpaster B H, Storlien L. Muscle triglyceride and insulin resistance. Annu Rev Nutr . 2002; 22 325-346
- 65 Stannard S R, Johnson N A. Insulin resistance and elevated triglyceride in muscle: more important for survival than „thrifty” genes?. J Physiol. 2004; 554 595-607
- 66 Vessby B, Tengblad S, Lithell H. Insulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men. Diabetologia. 1994; 37 1044-1050
- 67 Houmard J A, Tanner C J, Yu C, Cunningham P G, Pories W J, MacDonald K G, Shulman G I. Effect of weight loss on insulin sensitivity and intramuscular long-chain fatty acyl-CoAs in morbidly obese subjects. Diabetes. 2002; 51 2959-2963
- 68 Yu C, Chen Y, Cline G W, Zhang D, Zong H, Wang Y, Bergeron R, Kim J K, Cushman S W, Cooney G J, Atcheson B, White M F, Kraegen E W, Shulman G I. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem. 2002; 277 50230-50236
- 69 Mayerson A B, Hundal R S, Dufour S, Lebon V, Befroy D, Cline G W, Enocksson S, Inzucchi S E, Shulman G I, Petersen K F. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes. 2002; 51 797-802
Priv.-Doz. Dr. med. Joachim Spranger
Deutsches Institut für Ernährungsforschung, Abteilung Klinische Ernährung
Arthur-Scheunert-Allee 114 - 116
14558 Nuthetal/Deutschland
Telefon: + 49/33200/88-789
Fax: + 49/33200/88-777
eMail: spranger@dife.de