Semin Reprod Med 2006; 24(5): 304-313
DOI: 10.1055/s-2006-952152
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Embryonic Germ Cells: When Germ Cells Become Stem Cells

Candace L. Kerr1 , John D. Gearhart1 , Aaron M. Elliott2 , Peter J. Donovan3
  • 1Institute for Cell Engineering, Department of Obstetrics and Gynecology, Johns Hopkins University, Baltimore, Maryland
  • 2Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
  • 3Stem Cell Research Department of Developmental and Cell Biology/Biological Chemistry, University of California Irvine, Irvine, California
Further Information

Publication History

Publication Date:
22 November 2006 (online)

ABSTRACT

Embryonic germ cells (EGCs) are pluripotent stem cells derived from primordial germ cells (PGCs). PGCs are progenitors of adult gametes, which diverge from the somatic lineage between late embryonic to early fetal development. First derived in the mouse, EGCs have also been derived from human, chicken, and pig. As pluripotent stem cells, EGCs demonstrate long-term self-renewal via clonal expansion in an undifferentiated state, and differentiate in vitro to form embryoid bodies containing cells that represent all three germ layers as well as mixed cell populations of less differentiated progenitors and precursors. This is also demonstrated in vivo by their formation into experimentally induced teratocarcinomas following transplantation. Furthermore, mice, pig, and chicken EGCs have also been shown to contribute to experimentally produced chimeric animals, including germline transmission. Importantly, EGCs demonstrate normal and stable karyotypes as well as normal patterns of genomic imprinting, including X-inactivation. Transplantation studies have begun in a variety of models in hopes of defining their potential use to treat a wide variety of human conditions, including diabetes and urological and neurological disorders.

REFERENCES

  • 1 Donovan P J, Gearhart J. The end of the beginning for pluripotent stem cells.  Nature. 2001;  414(6859) 92-97
  • 2 Smith A G. Embryo-derived stem cells: of mice and men.  Annu Rev Cell Dev Biol. 2001;  17 435-462
  • 3 Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos.  Nature. 1981;  292(5819) 154-156
  • 4 Martin G R. Isolation of a pluripotent cell line from early mouse embryos cultured in media conditioned by teratocarcinoma stem cells.  Proc Natl Acad Sci USA. 1981;  78 7634-7638
  • 5 Thomson J A. Embryonic stem cell lines derived from human blastocysts.  Science. 1998;  282(5391) 1145-1147
  • 6 Shamblott M J, Axelman J, Wang S et al.. Derivation of pluripotent stem cells from cultured human primordial germ cells.  Proc Natl Acad Sci USA. 1998;  95(23) 13726-13731
  • 7 Park T S, Han J Y. Derivation and characterization of pluripotent embryonic germ cells in chicken.  Mol Reprod Dev. 2000;  56(4) 475-482
  • 8 Mueller S, Prelle K, Rieger N et al.. Chimeric pigs following blastocyst injection of transgenic porcine primordial germ cells.  Mol Reprod Dev. 1999;  54(3) 244-254
  • 9 Lee C K, Piedrahita J A. Effects of growth factors and feeder cells on porcine primordial germ cells in vitro.  Cloning. 2000;  2(4) 197-205
  • 10 Piedrahita J A, Moore K, Oetama B et al.. Generation of transgenic porcine chimeras using primordial germ cell-derived colonies.  Biol Reprod. 1998;  58(5) 1321-1329
  • 11 Turnpenny L, Spalluto C M, Perrett R M et al.. Evaluating human embryonic germ cells: concord and conflict as pluripotent stem cells.  Stem Cells. 2006;  24(2) 212-220
  • 12 Andrews P W. Teratocarcinomas and human embryology: pluripotent human EC cell lines. Review article.  APMIS. 1998;  106(1) 158-167
  • 13 Stevens L C. Origin of testicular teratomas from primordial germ cells in mice.  J Natl Cancer Inst. 1967;  38(4) 549-552
  • 14 Aflatoonian B, Moore H. Human primordial germ cells and embryonic germ cells, and their use in cell therapy.  Curr Opin Biotechnol. 2005;  16(5) 530-535
  • 15 Kanatsu-Shinohara M, Inoue K, Lee J et al.. Generation of pluripotent stem cells from neonatal mouse testis.  Cell. 2004;  119(7) 1001-1012
  • 16 Dixon K E. Evolutionary aspects of primordial germ cell formation.  Ciba Found Symp. 1994;  182 92-110
  • 17 McLaren A. Establishment of the germ cell lineage in mammals.  J Cell Physiol. 2000;  182(2) 141-143
  • 18 Lawson K A, Dunn N R, Roelen B A et al.. Bmp4 is required for the generation of primordial germ cells in the mouse embryo.  Genes Dev. 1999;  13(4) 424-436
  • 19 Ying Y, Liu X M, Marble A, Lawson K A, Zhao G Q. Requirement of Bmp8b for the generation of primordial germ cells in the mouse.  Mol Endocrinol. 2000;  14(7) 1053-1063
  • 20 Pellegrini M, Grimaldi P, Rossi P, Geremia R, Dolci S. Developmental expression of BMP4/ALK3/SMAD5 signaling pathway in the mouse testis: a potential role of BMP4 in spermatogonia differentiation.  J Cell Sci. 2003;  116(pt 16) 3363-3372
  • 21 Chiquoine A D. The identification, origin, and migration of the primordial germ cells in the mouse embryo.  Anat Rec. 1954;  118(2) 135-146
  • 22 Ginsburg M, Snow M H, McLaren A. Primordial germ cells in the mouse embryo during gastrulation.  Development. 1990;  110(2) 521-528
  • 23 Lawson K A, Hage W J. Clonal analysis of the origin of primordial germ cells in the mouse.  Ciba Found Symp. 1994;  182 68-84
  • 24 Mintz B, Russell E S. Gene-induced embryological modifications of primordial germ cells in the mouse.  J Exp Zool. 1957;  134(2) 207-237
  • 25 Tam P P, Snow M H. Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos.  J Embryol Exp Morphol. 1981;  64 133-147
  • 26 Ozdzenski W. Observations on the origin of primordial germ cells in the mouse.  Zool Polon. 1967;  17 367-379
  • 27 McKay D G, Hertig A T, Adams E C, Danziger S. Histochemical observations on the germ cells of human embryos.  Anat Rec. 1953;  117(2) 201-219
  • 28 Witschi E. Migration of the Germ cells of human embryos from the yolk sac to the primitive gonadal folds. Contributions in Embryology. Vol. 32. Washington, DC; Carnegie Institute 1948: 67-80
  • 29 Witschi E. Embryology of the ovary. In: H.G.a.S., Grady DE The Ovary. Baltimore; Williams and Wilkins 1963
  • 30 Motta P M, Makabe S, Nottola S A. The ultrastructure of human reproduction. I. The natural history of the female germ cell: origin, migration and differentiation inside the developing ovary.  Hum Reprod Update. 1997;  3(3) 281-295
  • 31 Pinkerton J H, Mc K D, Adams E C, Hertig A T. Development of the human ovary-a study using histochemical technics.  Obstet Gynecol. 1961;  18 152-181
  • 32 Makabe S, Naguro T, Motta P M. A new approach to the study of ovarian follicles by scanning electron microscopy and ODO maceration.  Arch Histol Cytol. 1992;  55(suppl) 183-190
  • 33 Francavilla S, Cordeschi G, Properzi G, Concordia N, Cappa F, Pozzi V. Ultrastructure of fetal human gonad before sexual differentiation and during early testicular and ovarian development.  J Submicrosc Cytol Pathol. 1990;  22(3) 389-400
  • 34 Rabinovici J, Jaffe R B. Development and regulation of growth and differentiated function in human and subhuman primate fetal gonads.  Endocr Rev. 1990;  11(4) 532-557
  • 35 Bendsen E, Byskov A G, Laursen S B, Larsen H P, Andersen C Y, Westergaard L G. Number of germ cells and somatic cells in human fetal testes during the first weeks after sex differentiation.  Hum Reprod. 2003;  18(1) 13-18
  • 36 Gondos B, Hobel C J. Ultrastructure of germ cell development in the human fetal testis.  Z Zellforsch Mikrosk Anat. 1971;  119(1) 1-20
  • 37 Skrzypczak J, Pisarski T, Biczysko W, Kedzia H. Evaluation of germ cells development in gonads of human fetuses and newborns.  Folia Histochem Cytochem (Krakow). 1981;  19(1) 17-24
  • 38 Gondos B, Westergaard L, Byskov A G. Initiation of oogenesis in the human fetal ovary: ultrastructural and squash preparation study.  Am J Obstet Gynecol. 1986;  155(1) 189-195
  • 39 Baker T G, Franchi L L. The fine structure of oogonia and oocytes in human ovaries.  J Cell Sci. 1967;  2(2) 213-224
  • 40 Sun E L, Gondos B. Squash preparation studies of germ cells in human fetal testes.  J Androl. 1984;  5(5) 334-338
  • 41 Donovan P J. Growth factor regulation of mouse primordial germ cell development.  Curr Top Dev Biol. 1994;  29 189-225
  • 42 Donovan P J, Stott D, Cairns L A, Heasman J, Wylie C C. Migratory and postmigratory mouse primordial germ cells behave differently in culture.  Cell. 1986;  44(6) 831-838
  • 43 Godin I, Wylie C C. TGF beta 1 inhibits proliferation and has a chemotropic effect on mouse primordial germ cells in culture.  Development. 1991;  113(4) 1451-1457
  • 44 Pesce M, Farrace M G, Piacentini M, Dolci S, De Felici M. Stem cell factor and leukemia inhibitory factor promote primordial germ cell survival by suppressing programmed cell death (apoptosis).  Development. 1993;  118(4) 1089-1094
  • 45 Donovan P J, de Miguel M P. Turning germ cells into stem cells.  Curr Opin Genet Dev. 2003;  13(5) 463-471
  • 46 Smith A G, Heath J K, Donaldson D D et al.. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides.  Nature. 1988;  336(6200) 688-690
  • 47 Williams R L, Hilton D J, Pease S et al.. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells.  Nature. 1988;  336(6200) 684-687
  • 48 Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3.  Genes Dev. 1998;  12(13) 2048-2060
  • 49 Dolci S, Williams D E, Ernst M K et al.. Requirement for mast cell growth factor for primordial germ cell survival in culture.  Nature. 1991;  352(6338) 809-811
  • 50 Matsui Y, Toksoz D, Nishikawa S et al.. Effect of Steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture.  Nature. 1991;  353(6346) 750-752
  • 51 De Felici M, Dolci S, Pesce M. Cellular and molecular aspects of mouse primordial germ cell migration and proliferation in culture.  Int J Dev Biol. 1992;  36(2) 205-213
  • 52 Resnick J L, Bixler L S, Cheng L, Donovan P J. Long-term proliferation of mouse primordial germ cells in culture.  Nature. 1992;  359(6395) 550-551
  • 53 Matsui Y, Zsebo K, Hogan B L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture.  Cell. 1992;  70(5) 841-847
  • 54 De Felici M, Dolci S, Pesce M. Proliferation of mouse primordial germ cells in vitro: a key role for cAMP.  Dev Biol. 1993;  157(1) 277-280
  • 55 Stewart C L, Gadi I, Bhatt H. Stem cells from primordial germ cells can reenter the germ line.  Dev Biol. 1994;  161(2) 626-628
  • 56 Labosky P A, Barlow D P, Hogan B L. Embryonic germ cell lines and their derivation from mouse primordial germ cells.  Ciba Found Symp. 1994;  182 157-168
  • 57 Resnick J L, Ortiz M, Keller J R, Donovan P J. Role of fibroblast growth factors and their receptors in mouse primordial germ cell growth.  Biol Reprod. 1998;  59(5) 1224-1229
  • 58 Takeuchi Y, Molyneaux K, Runyan C, Schaible K, Wylie C. The roles of FGF signaling in germ cell migration in the mouse.  Development. 2005;  132(24) 5399-5409
  • 59 Kung A L, Rebel V I, Bronson R T et al.. Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP.  Genes Dev. 2000;  14(3) 272-277
  • 60 Rebel V I, Kung A L, Tanner E A, Yang H, Bronson R T, Livingston D M. Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal.  Proc Natl Acad Sci USA. 2002;  99(23) 14789-14794
  • 61 Kishimoto M, Kohno T, Okudela K et al.. Mutations and deletions of the CBP gene in human lung cancer.  Clin Cancer Res. 2005;  11(2 Pt 1) 512-519
  • 62 Ward R, Johnson M, Shridhar V, van Deursen J, Couch F J. CBP truncating mutations in ovarian cancer.  J Med Genet. 2005;  42(6) 514-518
  • 63 Hansen T V, Rehfeld J F, Nielsen F C. KCl and forskolin synergistically up-regulate cholecystokinin gene expression via coordinate activation of CREB and the co-activator CBP.  J Neurochem. 2004;  89(1) 15-23
  • 64 Kimura T, Suzuki A, Fujita Y et al.. Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production.  Development. 2003;  130(8) 1691-1700
  • 65 Vasudevan K M, Gurumurthy S, Rangnekar V M. Suppression of PTEN expression by NF-kappa B prevents apoptosis.  Mol Cell Biol. 2004;  24(3) 1007-1021
  • 66 Durcova-Hills G, Ainscough J, McLaren A. Pluripotential stem cells derived from migrating primordial germ cells.  Differentiation. 2001;  68(4-5) 220-226
  • 67 Wartenberg H. Development of the early human ovary and role of the mesonephros in the differentiation of the cortex.  Anat Embryol (Berl). 1982;  165(2) 253-280
  • 68 Turnpenny L, Brickwood S, Spalluto C M et al.. Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells.  Stem Cells. 2003;  21(5) 598-609
  • 69 Park J H, Kim S J, Lee J B et al.. Establishment of a human embryonic germ cell line and comparison with mouse and human embryonic stem cells.  Mol Cells. 2004;  17(2) 309-315
  • 70 Liu S, Liu H, Pan Y et al.. Human embryonic germ cells isolation from early stages of post-implantation embryos.  Cell Tissue Res. 2004;  318(3) 525-531
  • 71 Shamblott M J, Kerr C, Axelman L et al.. Derivation and differentiation of human embryonic germ cells. In: Lanza R, Hogan B, Melton D, et al Handbook of Stem Cells. Vol. 1. New York; Elsevier Academic Press 2004: 459-469
  • 72 Hahnel A C, Rappolee D A, Millan J L et al.. Two alkaline phosphatase genes are expressed during early development in the mouse embryo.  Development. 1990;  110(2) 555-564
  • 73 MacGregor G R, Zambrowicz B P, Soriano P. Tissue non-specific alkaline phosphatase is expressed in both embryonic and extraembryonic lineages during mouse embryogenesis but is not required for migration of primordial germ cells.  Development. 1995;  121(5) 1487-1496
  • 74 Okazawa H, Okamoto K, Ishino F et al.. The oct3 gene, a gene for an embryonic transcription factor, is controlled by a retinoic acid repressible enhancer.  EMBO J. 1991;  10(10) 2997-3005
  • 75 Yeom Y I, Fuhrmann G, Ovitt C E et al.. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells.  Development. 1996;  122(3) 881-894
  • 76 Fox N, Damjanov I, Martinez-Hernandez A, Knowles B B, Solter D. Immunohistochemical localization of the early embryonic antigen (SSEA-1) in postimplantation mouse embryos and fetal and adult tissues.  Dev Biol. 1981;  83(2) 391-398
  • 77 Hahnel A C, Eddy E M. The distribution of two cell surface determinants of mouse embryonal carcinoma and early embryonic cells.  J Reprod Immunol. 1987;  10(2) 89-110
  • 78 De Felici M, Scaldaferri M L, Lobascio M et al.. Experimental approaches to the study of primordial germ cell lineage and proliferation.  Hum Reprod Update. 2004;  10(3) 197-206
  • 79 Chambers I, Colby D, Robertson M et al.. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells.  Cell. 2003;  113(5) 643-655
  • 80 Mitsui K, Tokuzawa Y, Itoh H et al.. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells.  Cell. 2003;  113(5) 631-642
  • 81 Nichols J, Zevnik B, Anastassiadis K et al.. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4.  Cell. 1998;  95(3) 379-391
  • 82 Pesce M, Scholer H R. Oct-4: gatekeeper in the beginnings of mammalian development.  Stem Cells. 2001;  19(4) 271-278
  • 83 Pesce M, Wang X, Wolgemuth D J, Scholer H. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation.  Mech Dev. 1998;  71(1-2) 89-98
  • 84 Scholer H R, Ruppert S, Suzuki N, Chowdhury K, Gruss P. New type of POU domain in germ line-specific protein Oct-4.  Nature. 1990;  344(6265) 435-439
  • 85 Pesce M, Scholer H R. Oct-4: control of totipotency and germline determination.  Mol Reprod Dev. 2000;  55(4) 452-457
  • 86 Kehler J, Tolkunova E, Koschorz B et al.. Oct4 is required for primordial germ cell survival.  EMBO Rep. 2004;  5(11) 1078-1083
  • 87 Tomioka M, Nishimoto M, Miyagi S et al.. Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex.  Nucleic Acids Res. 2002;  30(14) 3202-3213
  • 88 Tanaka T S, Kunath T, Kimber W L et al.. Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity.  Genome Res. 2002;  12(12) 1921-1928
  • 89 Tokuzawa Y, Kaiho E, Maruyama M et al.. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development.  Mol Cell Biol. 2003;  23(8) 2699-2708
  • 90 Nishimoto M, Fukushima A, Okuda A, Muramatsu M. The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2.  Mol Cell Biol. 1999;  19(8) 5453-5465
  • 91 Ben-Shushan E, Thompson J R, Gudas L J, Bergman Y. Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent site.  Mol Cell Biol. 1998;  18(4) 1866-1878
  • 92 Western P S, Maldonado-Saldivia J, van den Bergen J et al.. Analysis of Esg1 expression in pluripotent cells and the germline reveals similarities with Oct4 and Sox2 and differences between human pluripotent cell lines.  Stem Cells. 2005;  23(10) 1436-1442
  • 93 Hart A H, Hartley L, Ibrahim M, Robb L. Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human.  Dev Dyn. 2004;  230(1) 187-198
  • 94 Hatano S Y, Tada M, Kimura H et al.. Pluripotential competence of cells associated with Nanog activity.  Mech Dev. 2005;  122(1) 67-79
  • 95 Kuroda T, Tada M, Kubota H et al.. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression.  Mol Cell Biol. 2005;  25(6) 2475-2485
  • 96 Ruggiu M, Speed R, Taggart M et al.. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis.  Nature. 1997;  389(6646) 73-77
  • 97 Lin Y, Page D C. Dazl deficiency leads to embryonic arrest of germ cell development in XY C57BL/6 mice.  Dev Biol. 2005;  288(2) 309-316
  • 98 Reynolds N, Collier B, Maratou K et al.. Dazl binds in vivo to specific transcripts and can regulate the pre-meiotic translation of Mvh in germ cells.  Hum Mol Genet. 2005;  14(24) 3899-3909
  • 99 Tanaka S S, Toyooka Y, Akasu R et al.. The mouse homolog of Drosophila Vasa is required for the development of male germ cells.  Genes Dev. 2000;  14(7) 841-853
  • 100 Castrillon D H, Quade B J, Wang T Y, Quigley C, Crum C P. The human VASA gene is specifically expressed in the germ cell lineage.  Proc Natl Acad Sci USA. 2000;  97(17) 9585-9590
  • 101 Jaruzelska J, Kotecki M, Kusz K, Spik A, Firpo M, Reijo Pera R A. Conservation of a Pumilio-Nanos complex from Drosophila germ plasm to human germ cells.  Dev Genes Evol. 2003;  213(3) 120-126
  • 102 Lange U C, Saitou M, Western P S, Barton S C, Surani M A. The fragilis interferon-inducible gene family of transmembrane proteins is associated with germ cell specification in mice.  BMC Dev Biol. 2003;  3 1
  • 103 Zwaka T P, Thomson J A. A germ cell origin of embryonic stem cells?.  Development. 2005;  132(2) 227-233
  • 104 Hubner K, Fuhrmann G, Christenson L K et al.. Derivation of oocytes from mouse embryonic stem cells.  Science. 2003;  300(5623) 1251-1256
  • 105 Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley G Q. Derivation of embryonic germ cells and male gametes from embryonic stem cells.  Nature. 2004;  427(6970) 148-154
  • 106 Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro.  Proc Natl Acad Sci USA. 2003;  100(20) 11457-11462
  • 107 Clark A T, Bodnar M S, Fox M et al.. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro.  Hum Mol Genet. 2004;  13(7) 727-739
  • 108 Pan Y, Chen X, Wang S et al.. In vitro neuronal differentiation of cultured human embryonic germ cells.  Biochem Biophys Res Commun. 2005;  327(2) 548-556
  • 109 Mueller D, Shamblott M J, Fox H E, Gearhart J D, Martin L J. Transplanted human embryonic germ cell-derived neural stem cells replace neurons and oligodendrocytes in the forebrain of neonatal mice with excitotoxic brain damage.  J Neurosci Res. 2005;  82(5) 592-608
  • 110 Kerr D A, Llado J, Shamblott M J et al.. Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury.  J Neurosci. 2003;  23(12) 5131-5140
  • 111 Frimberger D, Morales N, Shamblott M, Gearhart J D, Gearhart J P, Lakshmanan Y. Human embryoid body-derived stem cells in bladder regeneration using rodent model.  Urology. 2005;  65(4) 827-832

Peter J 

Donovan, Department of Developmental and Cell Biology/Biological Chemistry, University of California Irvine

2054 Hewitt Hall, Irvine, CA 92687

Email: pdonovan@uci.edu

John D Gearhart

Institute for Cell Engineering, Department of Obstetrics and Gynecology, Johns Hopkins University

733 N. Broadway, Broadway Research Building Suite 771, Baltimore, MD 21205

Email: jgearhart@jhmi.edu