RSS-Feed abonnieren
DOI: 10.1055/s-2006-952153
Pluripotency in Adult Stem Cells: State of the Art
Publikationsverlauf
Publikationsdatum:
22. November 2006 (online)
ABSTRACT
For many years, it has long been known that stem cells derived from adult tissues maintain the capacity for self-renewal and differentiation into multiple cell types that are characteristic of the tissue of origin. Recent studies have shown new evidence that several tissues may contain cells capable of generating differentiated cells beyond their own tissue boundaries, defining a process termed stem cell plasticity. The pluripotency of adult stem cells have evoked significant excitement over the possibility of novel functional uses of stem cells, with the final purpose to develop new and more effective treatment strategies. However, despite the number of promising studies describing the plasticity of adult stem cells, many questions remain to be answered.
In this article, we critically review the current state of the art in the field of adult stem cells, focussing on the present understanding of the concepts of stem cell pluripotency and plasticity.
KEYWORDS
Stem cells - totipotency - pluripotency - multipotency - unipotency - plasticity
REFERENCES
- 1 Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981; 292 154-156
- 2 Thomson J A, Itskovitz-Eldor J, Shapiro S S et al.. Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282 1145-1147
- 3 Thomson J, Kalishman J, Golos T et al.. 1995. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A. 1995; 92 7844-7848
- 4 Shamblott M, Axelman J, Wang S et al.. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA. 1998; 95 13726-13731
- 5 Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder J C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA. 1993; 90 8424-8428
- 6 Smith A G. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol. 2000; 17 435-462
- 7 Pera M F, Reubinoff B, Trounson A. Human embryonic stem cells. J Cell Sci. 2000; 113 5-10
- 8 Spangrude G, Heimfeld S, Weissman I. Purification and characterization of mouse hematopoietic stem cells. Science. 1988; 241 58-62
- 9 Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single 34-low/negative hematopoietic stem cell. Science. 1996; 273 242-245
- 10 Bhatia M, Bonnet D, Dick J E. Identification of a novel CD34 negative population of primitive human hematopoietic cells capabale of repopulating NOD/SCID mice. Blood. 1997; 90 1134a
- 11 Weissman I L, Anderson D J, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol. 2001; 17 387-403
- 12 Stemple D L, Anderson D J. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell. 1992; 71 973-985
- 13 Rietze R L, Valcanis H, Brooker G F, Thomas T, Voss A K, Bartlett P F. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature. 2001; 412 736-739
- 14 Seaberg R M, Smukler S R, Kieffer T J et al.. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol. 2004; 22 1115-1124
- 15 Toma J G, Akhavan M, Fernandes K J et al.. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol. 2001; 3 778-784
- 16 Jiang Y, Jahagirdar B, Reyes M et al.. Pluripotent nature of adult marrow derived mesenchymal stem cells. Nature. 2002; 418 41-49
- 17 Kogler G, Sensken S, Airey J A et al.. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004; 200 123-135
- 18 D'Ippolito G, Diabira S, Howard G A, Menei P, Roos B A, Schiller P C. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci. 2004; 117 2971-2981
- 19 Yoon Y S, Wecker A, Heyd L et al.. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest. 2005; 115 326-338
- 20 Brook F A, Gardner R L. The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci USA. 1997; 94 5709-5712
- 21 McKay R. Stem cells in the central nervous system. Science. 1997; 276 66-71
- 22 Gage F H. Mammalian neural stem cells. Science. 2000; 287 1433-1438
- 23 Watt F M. Stem cell fate and patterning in mammalian epidermis. Curr Opin Genet Dev. 2001; 11 410-417
- 24 Daniels J T, Dart J K, Tuft S J, Khaw P T. Corneal stem cells in review. Wound Repair Regen. 2001; 9 483-494
- 25 Slack J M. Developmental biology of the pancreas. Development. 1995; 121 1569-1580
- 26 Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature. 2001; 414 98-104
- 27 Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci USA. 2003; 100(suppl 1) 11830-11835
- 28 Blau H M, Brazelton T R, Weimann J M. The evolving concept of a stem cell: entity or function?. Cell. 2001; 105 829-841
- 29 Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961; 9 493-495
- 30 Holterman C E, Rudnicki M A. Molecular regulation of satellite cell function. Semin Cell Dev Biol. 2000; 13(6) 439-446
- 31 Rafii S, Shapiro F, Rimarachin J et al.. Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood. 1994; 84 10-19
- 32 Krause D S, Theise N D, Collector M I et al.. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001; 105 369-377
- 33 Theise N D, Badve S, Saxena R et al.. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology. 2000; 31 235-240
- 34 Kale S, Karihaloo A, Clark P R, Kashgarian M, Krause D S, Cantley L G. Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest. 2003; 112 42-49
- 35 Petersen B E, Bowen W C, Patrene K D et al.. Bone marrow as a potential source of hepatic oval cells. Science. 1999; 284 1168-1170
- 36 Lagasse E, Connors H, Al-Dhalimy M et al.. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo . Nat Med. 2000; 6 1229-1234
- 37 Vassilopoulos G, Wang P R, Russell D W. Transplanted bone marrow regenerates liver by cell fusion. Nature. 2003; 422 901-904
- 38 Wang X, Willenbring H, Akkari Y et al.. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature. 2003; 422 897-901
- 39 Ianus A, Holz G G, Theise N D, Hussain M A. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest. 2003; 111 843-850
- 40 Wagers A J, Sherwood R I, Christensen J L, Weissman I L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science. 2002; 297 2256-2259
- 41 Alvarez-Dolado M, Pardal R, Garcia-Verdugo J M et al.. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature. 2003; 425 968-973
- 42 Brazelton T R, Rossi F MV, Keshet G I, Blau H M. From marrow to brain: expression of neuronal phenotypes in adult mice. Science. 2000; 290 1775-1779
- 43 Mezey E, Chandross K J, Harta G, Maki R A, McKercher S R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science. 2000; 290 1779-1782
- 44 Priller J, Persons D A, Klett F F, Kempermann G, Kreutzberg G W, Dirnagl U. Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo . J Cell Biol. 2001; 155 733-738
- 45 Weimann J M, Charlton C A, Brazelton T R, Hackman R C, Blau H M. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci USA. 2003; 100 2088-2093
- 46 Weimann J M, Johansson C B, Trejo A, Blau H M. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol. 2003; 5 959-966
- 47 LaBarge M A, Blau H M. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell. 2002; 111 589-601
- 48 Camargo F D, Green R, Capetenaki Y, Jackson K A, Goodell M A. Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med. 2003; 9 1520-1527
- 49 Corbel S Y, Lee A, Yi L et al.. Contribution of hematopoietic stem cells to skeletal muscle. Nat Med. 2003; 9 1528-1532
- 50 Ferrari G, Cusella-De Angelis G, Coletta M et al.. Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998; 279 1528-1530
- 51 Gussoni E, Soneoka Y, Strickland C et al.. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature. 1999; 401 390-394
- 52 Grant M B, May W S, Caballero S et al.. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med. 2002; 8 607-612
- 53 Jackson K, Majka S M, Wang H et al.. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001; 107 1395-1402
- 54 Orlic D, Kajstura J, Chimenti S et al.. Bone marrow cells regenerate infarcted myocardium. Nature. 2001; 410 701-705
- 55 Orlic D, Kajstura J, Chimenti S et al.. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA. 2001; 98 10344-10349
- 56 Kajstura J, Rota M, Whang B et al.. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res. 2005; 96 127-137
- 57 Murry C E, Soonpaa M H, Reinecke H et al.. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004; 428 664-668
- 58 Balsam L B, Wagers A J, Christensen J L, Kofidis T, Weissman I L, Robbins R C. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004; 428 668-673
- 59 Pittenger M F, Mackay A M, Beck S C et al.. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284 143-147
- 60 Prockop D. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997; 276 71-74
- 61 Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie C M. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood. 2001; 98 2615-2625
- 62 Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie C M. Multipotent progenitor cells can be isolated from post-natal murine bone marrow, muscle and brain. Exp Hematol. 2002; 30 896-904
- 63 Kues W A, Carnwath J W, Niemann H. From fibroblasts and stem cells: implications for cell therapies and somatic cloning. Reprod Fertil Dev. 2005; 17 125-134
- 64 Baum C, Weissman I, Tsukamoto A, Buckle A, Peault B. Isolation of a candidate human hematopoietic stem cell population. Proc Natl Acad Sci USA. 1992; 89 2804-2808
- 65 Krause D S, Ito T, Fackler M J et al.. Characterization of murine CD34, a marker for hematopoietic progenitor and stem cells. Blood. 1994; 84 691-701
- 66 Uchida N, Combs J, Chen S, Zanjani E, Hoffman R, Tsukamoto A. Primitive human hematopoietic cells displaying differential efflux of the rhodamine 123 dye have distinct biological activities. Blood. 1996; 88 1297-1305
- 67 Morrison S J, Weissman I L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1994; 1 661-673
- 68 Zijlmans J M, Visser J W, Kleiverda K, Kluin P M, Willemze R, Fibbe W E. Modification of rhodamine staining allows identification of hematopoietic stem cells with preferential short-term or long-term bone marrow-repopulating ability. Proc Natl Acad Sci USA. 1995; 92 8901-8905
- 69 Li C L, Johnson G R. Rhodamine123 reveals heterogeneity within murine Lin-, Sca-1 + hemopoietic stem cells. J Exp Med. 1992; 175 1443-1447
- 70 Goodell M, Rosenzweig M, Kim H et al.. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of 34 antigen exist in multiple species. Nat Med. 1997; 3 1337-1345
- 71 Goodell M, Brose K, Paradis G, Conner A, Mulligan R. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo . J Exp Med. 1996; 183 1797-1806
- 72 Zhou S, Schuetz J D, Bunting K D et al.. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001; 7 1028-1034
- 73 Chaudhary P M, Roninson I B. Expression and activity of P-glycoprotein a multidrug efflux pump in human hematopoietic stem cells. Cell. 1991; 66 85-94
- 74 Michallet M, Philip T, Philip I et al.. Transplantation with selected autologous peripheral blood CD34 + Thy1 + hematopoietic stem cells (HSCs) in multiple myeloma: impact of HSC dose on engraftment, safety, and immune reconstitution. Exp Hematol. 2000; 28 858-870
- 75 Kawashima I, Zanjani E, Almaida-Porada G, Flake A, Zeng H, Ogawa M. CD34 + human marrow cells that express low levels of Kit protein are enriched for long-term marrow-engrafting cells. Blood. 1996; 87 4136-4142
- 76 Camargo F D, Finegold M, Goodell M A. Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. J Clin Invest. 2004; 113 1266-1270
- 77 Altman J, Das G. Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol. 1966; 126 337-389
- 78 Uchida N, Buck D W, He D et al.. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA. 2000; 97 14720-14725
- 79 Reynolds B, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992; 255 1707-1710
- 80 Gritti A, Parati E A, Cova L et al.. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci. 1996; 16 1091-1100
- 81 Lois C, Alvarez-Buylla A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA. 1993; 90 2074-2077
- 82 Chiasson B J, Tropepe V, Morshead C M, Van der Kooy D. Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential but only subependymal cells have stem cell characteristics. J Neurosci. 1999; 19 4462-4473
- 83 Palmer T D, Takahashi J, Gage F H. The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci. 1997; 8 389-404
- 84 Richards L J, Kilpatrick T J, Bartlett P F. 1992. De novo generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci USA. 1992; 89 8591-8595
- 85 Johansson C B, Momma S, Clarke D L, Risling M, Lendahl U, Frisen J. Identification of a neural stem cell in the adult mammalian central nervous system. Cell. 1999; 96 25-34
- 86 Suhonen J, Peterson D, Ray J, Gage F. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo . Nature. 1996; 383 624-627
- 87 Doetsch F, Caille I, Lim D A, Garcia-Verdugo J M, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999; 97 703-716
- 88 Gould E, Reeves A J, Graziano M S, Gross C G. Neurogenesis in the neocortex of adult primates. Science. 1999; 286 548-552
- 89 Shihabuddin L S, Horner P J, Ray J, Gage F H. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci. 2000; 20 8727-8735
- 90 Brustle O, Karram K, Huttner A et al.. Chimeric brains generated by intraventricular transplantation of fetal human brain cells into embryonic rats. Nat Biotechnol. 1998; 16 1040-1044
- 91 Modo M, Mellodew K, Cash D et al.. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage. 2004; 21 311-317
- 92 Kim J H, Auerbach J M, Rodriguez-Gomez J A et al.. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature. 2002; 418 50-56
- 93 Brustle O, Jones K, Learish R et al.. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science. 1999; 285 754-756
- 94 Bulte J W, Zhang S, van Gelderen P et al.. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA. 1999; 96 15256-15261
- 95 Jansen E M, Solberg L, Underhill S et al.. Transplantation of fetal neocortex ameliorates sensorimotor and locomotor deficits following neonatal ischemic-hypoxic brain injury in rats. Exp Neurol. 1997; 147 487-497
- 96 Shih C C, Weng Y, Mamelak A, LeBon T, Hu M C, Forman S. Identification of a candidate human neurohematopoietic stem-cell population. Blood. 2001; 98 2412-2422
- 97 Bjornson C R, Rietze R, Reynolds B, Magli M, Vescovi A. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo . Science. 1999; 283 534-537
- 98 Morshead C M, Benveniste P, Iscove N N. Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat Med. 2002; 8 268-273
- 99 Clarke D L, Johansson C B, Wilbertz J et al.. Generalized potential of adult neural stem cells. Science. 2000; 288 1660-1663
- 100 Tajbakhsh S. Skeletal muscle stem and progenitor cells: reconciling genetics and lineage. Exp Cell Res. 2005; 306 364-372
- 101 Goldring K, Partridge T, Watt D. Muscle stem cells. J Pathol. 2002; 197 457-467
- 102 Seale P, Sabourin L A, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki M A. Pax7 is required for the specification of myogenic satellite cells. Cell. 2000; 102 777-786
- 103 Asakura A, Komaki M, Rudnicki M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation. 2001; 68 245-253
- 104 Wada M R, Inagawa-Ogashiwa M, Shimizu S, Yasumoto S, Hashimoto N. Generation of different fates from multipotent muscle stem cells. Development. 2002; 129 2987-2995
- 105 Jackson K, Mi T, Goodell M A. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA. 1999; 96 14482-14486
- 106 McKinney-Freeman S L, Jackson K A, Camargo F D, Ferrari G, Mavilio F, Goodell M A. Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci USA. 2002; 99 1341-1346
- 107 Kawada H, Ogawa M. Bone marrow origin of hematopoietic progenitors and stem cells in murine muscle. Blood. 2001; 98 2008-2013
- 108 Fridenshtein A. Stromal bone marrow cells and the hematopoietic microenvironment. Arkh Patol. 1982; 44 3-11
- 109 De Ugarte D A, Morizono K, Elbarbary A et al.. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003; 174 101-109
- 110 Campagnoli C, Roberts I A, Kumar S, Bennett P R, Bellantuono I, Fisk N M. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001; 98 2396-2402
- 111 Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004; 22 649-658
- 112 Miura M, Gronthos S, Zhao M et al.. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA. 2003; 100 5807-5812
- 113 Wakitani S, Saito T, Caplan A. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve. 1995; 18 1417-1426
- 114 Gronthos S, Zannettino A C, Hay S J et al.. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci. 2003; 116 1827-1835
- 115 Colter D C, Class R, DiGirolamo C M, Prockop D J. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA. 2000; 97 3213-3218
- 116 Pereira R F, O'Hara M D, Laptev A V et al.. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA. 1998; 95 1142-1147
- 117 Liechty K W, MacKenzie T C, Shaaban A F et al.. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med. 2000; 6 1282-1286
- 118 Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al.. Adult bone marrow stromal cells differentiate into neural cells in vitro . Exp Neurol. 2000; 164 247-256
- 119 Woodbury D, Schwarz E J, Prockop D J, Black I B. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000; 61 364-370
- 120 Zhao L R, Duan W M, Reyes M, Keene C D, Verfaillie C M, Low W C. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol. 2002; 174 11-20
- 121 Kopen G, Prockop D, Phinney D. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA. 1999; 96 10711-10716
- 122 Jin H K, Carter J E, Huntley G W, Schuchman E H. Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. J Clin Invest. 2002; 109 1183-1191
- 123 Akiyama Y, Radtke C, Kocsis J D. Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci. 2002; 22 6623-6630
- 124 Horwitz E M, Prockop D J, Fitzpatrick L A et al.. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. 1999; 5 309-315
- 125 Koc O N, Day J, Nieder M, Gerson S L, Lazarus H M, Krivit W. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant. 2002; 30 215-222
- 126 Scholer H R, Hatzopoulos A K, Balling R, Suzuki N, Gruss P. A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J. 1989; 8 2543-2550
- 127 Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker P H, Verfaillie C M. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest. 2002; 109 337-346
- 128 Schwartz R E, Reyes M, Koodie L et al.. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest. 2002; 109 1291-1302
- 129 Jiang Y, Blackstad M, Chen A, Miller R F, Verfaillie C M. Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci USA. 2003; 100(suppl 1) 11854-11860
- 130 Keene C D, Ortiz-Gonzalez X R, Jiang Y, Largaespada D A, Verfaillie C M, Low W C. Neural differentiation and incorporation of bone marrow-derived multipotent adult progenitor cells after single cell transplantation into blastocyst stage mouse embryos. Cell Transplant. 2003; 12 210-213
- 131 Reyes M, Li S, Foraker J, Kimura E, Chamberlain J S. Donor origin of multipotent adult progenitor cells in radiation chimeras. Blood. 2005; 106 3646-3649
- 132 Toma J G, McKenzie I A, Bagli D, Miller F D. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells. 2005; 23 727-737
- 133 Fernandes K J, McKenzie I A, Mill P et al.. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol. 2004; 6 1082-1093
Marta Serafini
Stem Cell Institute, Department of Medicine, University of Minnesota Medical School, Minneapolis
MN 55455
eMail: serafini@marionegri.it